„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
Nincs szerkesztési összefoglaló |
|||
(20 közbenső módosítás, amit 11 másik szerkesztő végzett, nincs mutatva) | |||
389. sor: | 389. sor: | ||
<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math> | <math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math> | ||
/*Szerintem rosszak az integrálási határok, fel vannak cserélve és így negatív eredményt kapunk.*/ | |||
Felhasználva a <math>C=\frac Q U</math> formulát: | Felhasználva a <math>C=\frac Q U</math> formulát: | ||
543. sor: | 545. sor: | ||
== Stacionárius mágneses tér == | == Stacionárius mágneses tér == | ||
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek === | === 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek === | ||
Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció). | |||
A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget! | A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget! | ||
639. sor: | 641. sor: | ||
=== | === 53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon=== | ||
Toroid alakú vasmagon egy <math>N_1=300</math> és egy <math>N_2=500</math> menetes tekercs helyezkedik el. Az <math>N_1</math> menetszámú tekercs öninduktivitása <math>L_1=0,9H</math>. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát! | |||
{{Rejtett | {{Rejtett | ||
|mutatott='''Megoldás''' | |mutatott='''Megoldás''' | ||
|szöveg= | |szöveg= | ||
}} | |||
=== 58. Feladat: Toroid tekercs fluxusa és energiája=== | === 58. Feladat: Toroid tekercs fluxusa és energiája=== | ||
773. sor: | 750. sor: | ||
}} | }} | ||
===62. Feladat: Szolenoid tekercs mágneses indukciója === | |||
Adott: <math>A=5cm^2</math>, <math>N=1000</math>, <math>L=???</math>, <math>\mu_r =???</math>. | |||
Adja meg a mágneses indukció nagyságát a Szolenoid belsejében! | |||
=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia === | === 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia === | ||
921. sor: | 904. sor: | ||
Felírjuk a Heimholtz egyenleteket a TV végére: | Felírjuk a Heimholtz egyenleteket a TV végére: | ||
<math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{ | <math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{j\beta l} </math> | ||
<math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{ | <math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{j\beta l} </math> | ||
<math> l = 500m </math> | <math> l = 500m </math> | ||
975. sor: | 958. sor: | ||
Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le: | Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le: | ||
ez egy kedves becsapós kérdés, mert amennyiben <math>Z_{2} = \frac{1}{j\omega C}</math>, akkor <math>r = \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{\frac{1}{j\omega C}-Z_{0}}{\frac{1}{j\omega C}+Z_{0}}</math>. | |||
Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az <math>r =1</math>-et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor. | |||
1 303. sor: | 1 288. sor: | ||
(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!) | (megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!) | ||
(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó) | |||
}} | }} | ||
=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség === | === 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség === | ||
1 573. sor: | 1 559. sor: | ||
=== 114. Feladat: Teljesítményváltozás === | === 114. Feladat: Teljesítményváltozás === | ||
Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet! | Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet! | ||
=== 116. Disszipált teljesítmény alumíniumvezetőben === | |||
Egy hengeres <math> r = 2mm </math> sugarú és <math> L = 8m </math> hosszúságú alumínium vezetőben <math> I = 3A </math> amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység <math> \delta = 60 \mu m </math> , határozza meg a vezető által disszipált teljesítményt, ha <math> \sigma = 35*10^6 S/m </math>! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= Mivel a vizsgáztatóm azt mondta a megoldásomra, hogy rossz. de közben áttértünk a tételre, nem írnék le rossz megoldást. | |||
}} | |||
== Elektromágneses hullám szigetelőben== | == Elektromágneses hullám szigetelőben== | ||
=== 119. Feladat: Közeg hullámimpedanciájának számítása === | === 119. Feladat: Közeg hullámimpedanciájának számítása === | ||
1 605. sor: | 1 600. sor: | ||
Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math> | Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math> | ||
}} | |||
=== 120. Feladat: Felületen átáramló hatásos teljesítmény számítása === | |||
Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= A megoldás ismeretlen. | |||
}} | |||
=== 121. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása === | |||
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel! | |||
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math> | |||
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math> | |||
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére: | |||
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math> | |||
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math> | |||
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{kV \over m}</math> | |||
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>): | |||
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math> | |||
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math> | |||
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor: | |||
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot \vec{e}_z - 31.83 \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math> | |||
}} | }} | ||
1 708. sor: | 1 748. sor: | ||
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}= | {E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}= | ||
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math> | {250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math> | ||
}} | |||
=== 130. Feladat: Elektromágneses síkhullám ideális szigetelőben === | |||
Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: <math>E(x,t) = 100 \cdot \cos(1.1t - 7.5x) \cdot e_x \frac{V}{m}</math>. | |||
Az idő mértékegysége <math>\mu s</math>, a távolságé <math>km</math>. | |||
Határozza meg a közeg dielektromos állandóját! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
A térerősség általános időfüggvénye: <math>E(x,t) = E_0 \cdot \cos(\omega t - \beta x) \cdot e_x</math>. | |||
Ebből látszik, hogy jelen feladatban <math>\omega = 1.1 \frac{Mrad}{s} </math> és <math>\beta = 7.5 \frac{1}{km}</math>. | |||
Tudjuk azt is, hogy <math> v_f = \frac{c}{\sqrt \varepsilon_r} = \frac{\omega}{\beta}</math>. Átrendezve: <math>\varepsilon_r = (\frac{\beta}{\omega} \cdot c)^2 = (\frac{7.5 \cdot 10^-3}{1.1 \cdot 10^6} \cdot 3 \cdot 10^8)^2 = 4.18 </math>. | |||
}} | }} | ||
1 748. sor: | 1 804. sor: | ||
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math> | <math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math> | ||
}} | |||
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása === | |||
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak. | |||
Tehát: | |||
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math> | |||
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math> | |||
//Bilicz azt mondta kell a Hx-hez egy negatív előjel | |||
}} | }} | ||