„Záróvizsga kvíz - Algoritmusok” változatai közötti eltérés

kérdések hozzáadása
a elemú -> elemű, valamint (feltételezhetően véletlenül bemásolt) pipa eltüntetése a helyes válaszból
 
(8 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva)
43. sor: 43. sor:
Melyik állítás igaz az alábbiak közül?
Melyik állítás igaz az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=1}}
{{Kvízkérdés|típus=egy|válasz=1}}
# Ha <math>x \le 3 </math> akkor az <math>E C</math> élet biztosan nem választja be az algoritmus a minimális feszítőfába.
# Ha <math>x < 3 </math> akkor az <math>E C</math> élet biztosan nem választja be az algoritmus a minimális feszítőfába.
# Az <math>A C</math> élet biztosan beválasztja az algoritmus a minimális feszítőfába, bármi is <math>x</math> értéke.
# Az <math>A C</math> élet biztosan beválasztja az algoritmus a minimális feszítőfába, bármi is <math>x</math> értéke.
# Az <math>A C</math> élet biztosan nem választja be az algoritmus a minimális feszítőfába, bármi is <math>x</math> értéke.
# Az <math>A C</math> élet biztosan nem választja be az algoritmus a minimális feszítőfába, bármi is <math>x</math> értéke.
69. sor: 69. sor:
Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy <math>P \neq N P</math> ?
Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy <math>P \neq N P</math> ?
{{Kvízkérdés|típus=egy|válasz=1}}
{{Kvízkérdés|típus=egy|válasz=1}}
# <math>X_{1} \in P</math> és <math>X_{2} \in N P \backslash P \checkmark</math>
# <math>X_{1} \in P</math> és <math>X_{2} \in N P \backslash P</math>
# <math>X_{1} \in P</math> és <math>X_{2} \in P</math>
# <math>X_{1} \in P</math> és <math>X_{2} \in P</math>
# <math>X_{1} \in \operatorname{coN} P</math> de <math>X_{1} \notin P</math>
# <math>X_{1} \in \operatorname{coN} P</math> de <math>X_{1} \notin P</math>
85. sor: 85. sor:
Az <math>A[1: n]</math> tömb alapján egy <math>P[1: n]</math> és egy <math>N[1: n]</math> tömböt töltünk ki a következőképpen:
Az <math>A[1: n]</math> tömb alapján egy <math>P[1: n]</math> és egy <math>N[1: n]</math> tömböt töltünk ki a következőképpen:
* ha <math>A[1]>0</math> akkor <math>P[1]=A[1]</math> és <math>N[1]=A[1]</math> .
* ha <math>A[1]>0</math> akkor <math>P[1]=A[1]</math> és <math>N[1]=A[1]</math> .
* ha <math>A[1] \le 0 </math> akkor <math>P[1]=0</math> és <math>N[1]=A[1]</math>
* ha <math>A[1] < 0 </math> akkor <math>P[1]=0</math> és <math>N[1]=A[1]</math>


A további értékeket <math>(i>2)</math> így számoljuk:
A további értékeket <math>(i>2)</math> így számoljuk:
* ha <math>A[i]>0</math> akkor <math>P[i]=P[i-1]+A[i]</math> és <math>N[i]=\max \{N[i-1]+A[i], A[i]\}</math>
* ha <math>A[i]>0</math> akkor <math>P[i]=P[i-1]+A[i]</math> és <math>N[i]=\max \{N[i-1]+A[i], A[i]\}</math>
* ha <math>A[i] \le 0</math> akkor <math>P[i]=0</math> és <math>N[i]=P[i-1]+A[i]</math>
* ha <math>A[i] < 0</math> akkor <math>P[i]=0</math> és <math>N[i]=P[i-1]+A[i]</math>


Melyik állítás igaz az alábbiak közül a kiszámolt <math>P[i]</math> és <math>N[i]</math> értékek jelentésére?
Melyik állítás igaz az alábbiak közül a kiszámolt <math>P[i]</math> és <math>N[i]</math> értékek jelentésére?
{{Kvízkérdés|típus=egy|válasz=4}}
{{Kvízkérdés|típus=egy|válasz=1}}
# <math>N[i]</math> megadja a legnagyobb összeget, amit valamelyik, legfeljebb egy negatív számot tartalmazó <math>A[j: i]</math> résztömbből ( <math>1 \leq j \leq i)</math> kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
# <math>N[i]</math> megadja a legnagyobb összeget, amit valamelyik, legfeljebb egy negatív számot tartalmazó <math>A[j: i]</math> résztömbből ( <math>1 \leq j \leq i)</math> kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
# <math>P[i]</math> megadja a legnagyobb összeget, amit valamelyik <math>A[j: i]</math> résztömbből <math>(1 \leq j \leq i)</math> kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
# <math>P[i]</math> megadja a legnagyobb összeget, amit valamelyik <math>A[j: i]</math> résztömbből <math>(1 \leq j \leq i)</math> kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
195. sor: 195. sor:
== Tekintsük azt az eldöntési feladatot, ahol egy irányítatlan <math>G</math> gráfról azt szeretnénk eldönteni, hogy hozzá lehet-e adni legfeljebb 5 élet <math>G</math>-hez úgy, hogy a keletkező gráfban legyen 100 pontú teljes részgráf. (Új csúcsot nem adunk hozzá a gráfhoz, csak éleket húzunk be a már meglevő csúcsok közé.) (2023 jan) ==
== Tekintsük azt az eldöntési feladatot, ahol egy irányítatlan <math>G</math> gráfról azt szeretnénk eldönteni, hogy hozzá lehet-e adni legfeljebb 5 élet <math>G</math>-hez úgy, hogy a keletkező gráfban legyen 100 pontú teljes részgráf. (Új csúcsot nem adunk hozzá a gráfhoz, csak éleket húzunk be a már meglevő csúcsok közé.) (2023 jan) ==
Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy <math>P \neq N P</math> ?
Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy <math>P \neq N P</math> ?
{{Kvízkérdés|típus=egy|válasz=2}}
{{Kvízkérdés|típus=egy|válasz=4}}
# A probléma <math>P</math>-ben van, de nincs <math>NP</math>-ben.
# A probléma <math>P</math>-ben van, de nincs <math>NP</math>-ben.
# A probléma <math>NP</math>-teljes és nincs <math>P</math>-ben.
# A probléma <math>NP</math>-teljes és nincs <math>P</math>-ben.
442. sor: 442. sor:
# A (b), a (c) és a (d) függvény is <math>O\left(n^{2}\right)</math>
# A (b), a (c) és a (d) függvény is <math>O\left(n^{2}\right)</math>


== Legyen <math>X</math> egy <math>n</math> elemú véges halmaz, <math>n>0</math>. Hány páratlan elemú részhalmaza van <math>X</math>-nek? (2021 jan) ==
== Legyen <math>X</math> egy <math>n</math> elemű véges halmaz, <math>n>0</math>. Hány páratlan elemű részhalmaza van <math>X</math>-nek? (2021 jan) ==
{{Kvízkérdés|típus=egy|válasz=3}}
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>n</math>
# <math>n</math>
452. sor: 452. sor:
== Egy város úthálózatát a <math>G</math> egyszerú, irányítatlan, összefüggő gráf írja le, a gráf csúcsai a csomópontok, az élek az ezeket összekötőútszakaszokat jelölik. (2021 jan) ==
== Egy város úthálózatát a <math>G</math> egyszerú, irányítatlan, összefüggő gráf írja le, a gráf csúcsai a csomópontok, az élek az ezeket összekötőútszakaszokat jelölik. (2021 jan) ==
Az utak sajnos eléggé rossz állapotúak, minden élre adott, hogy azt az útszakaszt mennyiért lehetne felújítani.
Az utak sajnos eléggé rossz állapotúak, minden élre adott, hogy azt az útszakaszt mennyiért lehetne felújítani.
A város vezetése azt szeretné megtudni, hogy mely útszakaszokat újitassa fel, ha a célja az, hogy a <math>v</math> csúccsal jelzett főtérről mindencsomópontba el lehessen jutni kizárólag felújított útszakaszokon.
A város vezetése azt szeretné megtudni, hogy mely útszakaszokat újitassa fel, ha a célja az, hogy a <math>v</math> csúccsal jelzett főtérről minden csomópontba el lehessen jutni kizárólag felújított útszakaszokon.
A következő ötletek merültek fel a legolcsóbb ilyen felújitás megtalálására:
A következő ötletek merültek fel a legolcsóbb ilyen felújitás megtalálására:
A: Dijkstra algoritmusával határozzák meg a legrövidebb utakat <math>v</math>-ből az összes többi csúcsba.
A: Dijkstra algoritmusával határozzák meg a legrövidebb utakat <math>v</math>-ből az összes többi csúcsba.
489. sor: 489. sor:
és <math>1 \le i \leq n</math> esetén:
és <math>1 \le i \leq n</math> esetén:


<math>T[i]=\max _{j \le i-1}\left\{T[j]+a_{i}\right\}</math>
<math>T[i]=\max _{j <i-1}\left\{T[j]+a_{i}\right\}</math>


<math>S[i]=\max _{j \leq i}\{T[j]\}</math>
<math>S[i]=\max _{j \leq i}\{T[j]\}</math>
578. sor: 578. sor:


== Tegyük fel, hogy <math>\mathrm{P} \neq \mathrm{NP}</math> Tekintsük azt a problémát, amikor adottak az <math>a_{1}, a_{2}, \ldots, a_{n}</math> pozitív egész számok, és azt kell eldönteni, hogy van-e olyan <math>I \subseteq\{1,2, \ldots, n\}</math>, melyre <math>\sum_{i \in I} a_{i}=2020</math> (2020 jan) ==
== Tegyük fel, hogy <math>\mathrm{P} \neq \mathrm{NP}</math> Tekintsük azt a problémát, amikor adottak az <math>a_{1}, a_{2}, \ldots, a_{n}</math> pozitív egész számok, és azt kell eldönteni, hogy van-e olyan <math>I \subseteq\{1,2, \ldots, n\}</math>, melyre <math>\sum_{i \in I} a_{i}=2020</math> (2020 jan) ==
Melyik állítás igaz az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=1}}
{{Kvízkérdés|típus=egy|válasz=1}}
Melyik állítás igaz az alábbiak közül?
# A probléma P-ben és NP-ben is benne van.
# A probléma P-ben és NP-ben is benne van.
# A probléma P-ben van, de nincs NP-ben.
# A probléma P-ben van, de nincs NP-ben.
627. sor: 627. sor:
# <math>T[2,20]=2</math>
# <math>T[2,20]=2</math>
# <math>T[100,15]=10</math>
# <math>T[100,15]=10</math>
# Az előzőek egyike sem igaz.
== Melyik az a legkisebb pozitív egész <math>d</math> szám, melyre <math>f(n) \in O\left(n^{d}\right)</math> teljesül, ha <math>f(n)=\sum_{k=1}^{n^{2}} \frac{k}{3}</math>? (2019 jun) ==
{{Kvízkérdés|típus=egy|válasz=3}}
# 2
# 3
# 4
# 5
# nincs ilyen d
== Ha az alábbi bináris keresőfán végrehajtjuk a BESZÚR(15) műveletet, akkor az eredményül kapott bináris kereső́ára melyik állítás igaz? (2019 jun) ==
[[Fájl:2019 jun info zv algo graf.jpg|keretnélküli]]
{{Kvízkérdés|típus=egy|válasz=2}}
# A 15 a gyökérben lesz.
# A fa magassága nem változik meg.
# A 15 egy olyan csúcsba kerül, ami gyereke a 12-es számot tartalmazónak.
# Az előzőek egyike sem igaz.
== Egy 200 csúcsú teljes páros gráfban az egyik oldalon a csúcsok 1-től 100-ig, a másik oldalon 101-től 200-ig vannak megszámozva. Hány olyan teljes párosítás található ebben a gráfban, amelyben minden páros csúcsnak páratlan, minden páratlannak pedig páros a szomszédja? (2019 jun) ==
{{Kvízkérdés|típus=egy|válasz=4}}
# <math>\frac{100 !}{2}</math>
# <math>\frac{100 !}{50 !}</math>
# <math>50 !+50 !</math>
# <math>50 ! \cdot 50</math> !
# Az előzőek egyike sem helyes.
== Egy 6 csúcsú irányítatlan gráfon mélységi bejárást végeztünk. Az alábbi táblázat tartalmazza a csúcsok mélységi és befejezési számait. (2019 jun) ==
{|
|-
|            || A || B || C || D || E || F
|-
| mélységi  || 4 || 3 || 2 || 5 || 1 || 6
|-
| befejezési || 4 || 1 || 5 || 2 || 6 || 3
|}
Melyik élről állíthatjuk biztosan, hogy nem lehet a gráfban?
{{Kvízkérdés|típus=egy|válasz=4}}
# <math>(B, E)</math>
# <math>(C, A)</math>
# <math>(C, D)</math>
# <math>(F, B)</math>
# A felsoroltak bármelyike előfordulhat.
== Hat kártya van elöttünk az asztalon, tudjuk, hogy mindegyiknek az egyik oldalán egy betủ, a másik oldalán egy szám van. A következőket látjuk: <math>A, B, C, 1,2,3</math>. (2019 jun) ==
Valaki azt állítja, hogy az is igaz, hogy minden mássalhangzó túloldalán páratlan szám szerepel. Ha minél kevesebb kártya megfordításával akarjuk ezt az állítást ellenőrizni, akkor melyik a jó módszer?
{{Kvízkérdés|típus=egy|válasz=4}}
# Mind a hat kártyát megfordítjuk.
# Csak a <math>B</math> kártyát fordítjuk meg.
# Csak a <math>B</math> és <math>C</math> kártyákat fordítjuk meg.
# Az elözőek egyike sem helyes.
== <math>\mathcal{A}: \quad \operatorname{Adott}</math> egy <math>G</math> irányítatlan gráf. (2019 jun) ==
Van-e <math>G</math>-ben kör?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\mathcal{A}</math> Benne van P-ben, de nincs benne NP-ben.
# <math>\mathcal{A}</math> Benne van NP-ben, de nincs benne P-ben.
# <math>\mathcal{A}</math> Benne van P-ben is és NP-ben is.
# <math>\mathcal{A}</math> Nincs benne P-ben se és NP-ben se.
== <math>\mathcal{B}: \quad</math> Adott egy <math>G</math> irányítatlan gráf. (2019 jun) ==
Van-e <math>G</math>-ben pontosan 2019 csúcsot tartalmazó kör?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\mathcal{B}</math> Benne van P-ben, de nincs benne NP-ben.
# <math>\mathcal{B}</math> Benne van NP-ben, de nincs benne P-ben.
# <math>\mathcal{B}</math> Benne van P-ben is és NP-ben is.
# <math>\mathcal{B}</math> Nincs benne P-ben se és NP-ben se.
== Tegyük fel, hogy <math>\mathrm{P} \neq</math> NP és jelölje <math>P_{1} \prec P_{2}</math> azt, hogy a <math>P_{1}</math> probléma Karp-redukálható (polinomiálisan visszavezethető) a <math>P_{2}</math> problémára. Tekintsük azt a két problémát, melyeknél adott egy <math>(G, k)</math> pár és  (2019 jun) ==
<math>\mathcal{A}</math> : a <math>G</math> élsúlyozott gráfban van-e legfeljebb <math>k</math> súlyú Hamilton-kör (2019 jun) ==
<math>\mathcal{B}</math> : a <math>G</math> gráfban van-e legalább <math>k</math> pontú teljes részgráf
Melyik állítás helyes az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=1}}
# <math>\mathcal{A} \prec \mathcal{B}</math> és <math>\mathcal{B} \prec \mathcal{A}</math>
# <math>\mathcal{A} \prec \mathcal{B}</math> és <math>\mathcal{B} \nprec \mathcal{A}</math>
# <math>\mathcal{A} \nprec \mathcal{B}</math> és <math>\mathcal{B} \prec \mathcal{A}</math>
# <math>\mathcal{A} \nprec \mathcal{B}</math> és <math>\mathcal{B} \nprec \mathcal{A}</math>
== Több különböző megbízás közül válogatunk, melyek mindegyikét adott napokon lehet elvégezni. Ha az <math>i</math>.ediket elvállaljuk, akkor a <math>k_{i}</math> naptól a <math>v_{i}</math> napig csak ezt csinálhatjuk. Legyen adott <math>n</math> megbízás a hozzájuk tartozó <math>k_{i}</math> és <math>v_{i}</math> dátumokkal. Azt akarjuk eldönteni, hogy elvállalható-e közülük legalább <math>n / 2</math> darab (mindegy, hogy melyikek). (2019 jun) ==
Melyik helyes az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=4}}
# Tetszőleges irányított gráfban legrövidebb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
# Tetszőleges irányított gráfban leghosszabb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
# Irányított körmentes gráfban legrövidebb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
# Irányított körmentes gráfban leghosszabb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
== Melyik feladat oldható meg <math>O(n)</math> lépésben? (2019 jun) ==
{{Kvízkérdés|típus=egy|válasz=3}}
# Tetszőleges <math>n</math> különböző szám növekvő sorrendbe rendezése.
# Annak ellenőrzése, hogy egy <math>n</math> csúcsú gráf összefüggő-e.
# Tetszőleges, <math>n</math> elemet tároló bináris keresőfa alapján a tárolt elemek növekvő sorrendben való felsorolása.
# Tetszőleges <math>n</math> elemből egy bináris keresőfa építése.
== Tekintsük a következő, az <math>a_{1}, a_{2}, \ldots, a_{n}</math> paraméterektől függő rekurzív definíciót! Az <math>(n+1) \times 1001</math> tömbben (2019 jun) ==
<math>T[i, 0]=1</math>  ha <math>0 \leq i \leq n</math>
<math>T[0, j]=0</math>  ha <math>1 \leq j \leq 1001</math>
<math>T[i, j]=T[i-1, j]</math>  ha <math>i \geq 1</math> és <math>j <a_{i}</math>
<math>T[i, j]=\max \left\{T[i-1, j], T\left[i-1, j-a_{i}\right]\right\}</math>  ha <math>i \geq 1</math> és <math>j \geq a_{i}</math>.
Legyen <math>a_{i}=3^{i-1}, i=1,2, \ldots</math> Melyik igaz az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>T[2,15]=1</math>
# <math>T[3,9]=0</math>
# <math>T[3,10]=1</math>
# <math>T[20,3]=0</math>
# Az előzőek egyike sem igaz.
# Az előzőek egyike sem igaz.