„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés

David14 (vitalap | szerkesztései)
Nagy Marcell (vitalap | szerkesztései)
a autoedit v2: fájlhivatkozások egységesítése, az új közvetlenül az adott fájlra mutat
 
(25 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva)
4. sor: 4. sor:
<div class="noautonum">__TOC__</div>
<div class="noautonum">__TOC__</div>


==1. Végtelen hosszú egyenes vezető mágneses tere==


Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezetőtől <math>r</math> távolságban lévő pontban határozza meg a <math>H</math> térerősséget és a <math>B</math> indukciót!
==1. Határozza meg egy végtelen hosszú egyenes vezető mágneses terét!==
 
'''Feladat:''' Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezetőtől <math>r</math> távolságban lévő pontban határozza meg a <math>H</math> térerősséget és a <math>B</math> indukciót!




13. sor: 14. sor:
Ábra:
Ábra:


[[Fájl:Labor2 kép3.jpg]]
[[File:Labor2 kép3.jpg]]


Ampere-féle gerjesztési törvényt felírva egy olyan zárt L görbére, amely által kifeszített, a vezetékre merőleges A körlapot a vezeték pont a közepén döfi át:
Ampere-féle gerjesztési törvényt felírva egy olyan zárt L görbére, amely által kifeszített, a vezetékre merőleges A körlapot a vezeték pont a közepén döfi át:


<math> \oint_L\limits \vec{H} \; \mathrm{d}\vec{l} =
<math> \oint_L\limits \vec{H} \; \mathrm{d}\vec{l} =
\oint_A\limits \left( \vec{J} + \frac{\mathrm{d}\vec{D}}{\mathrm{d}t} \right) \mathrm{d}\vec{s} </math>
\int_A\limits \left( \vec{J} + \frac{\partial\vec{D}}{\partial t} \right) \mathrm{d}\vec{s} </math>




Szimmetria okokból, a  mágneses térerősségvektorok a görbe mentén mindenhol érintő irányúak, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Az elektromos eltolásvektor időbeli változása zérus, az áramsűrűségvektor pedig merőleges az A körlapra, a felületintegrál eredménye az A körlapon átfolyó áramerősség:
Szimmetria okokból, a  mágneses térerősségvektorok a görbe mentén mindenhol érintő irányúak, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Az elektromos eltolásvektor időbeli változása zérus, az áramsűrűségvektor pedig merőleges az A körlapra, a felületintegrál eredménye az A körlapon átfolyó áramerősség:


<math> 2 r \pi H = I = \hat{I} \cos ( \omega t )</math>
<math> 2 r \pi \cdot H(r) = I = \hat{I} \cos ( \omega t )</math>




<math> \vec{H} = \frac{\hat{I}\cos (\omega t)}{2 r \pi} \cdot \vec{e}_{\varphi}</math>
<math> \vec{H}(r) = \frac{\hat{I}\cos (\omega t)}{2 r \pi} \cdot \vec{e}_{\varphi}</math>




<math> \vec{B} = \mu \cdot \vec{H} = \frac{\mu \cdot \hat{I}\cos ( \omega t )}{2 r \pi} \cdot \vec{e}_{\varphi} </math>
<math> \vec{B}(r) = \mu \cdot \vec{H}(r) = \frac{\mu \cdot \hat{I}\cos ( \omega t )}{2 r \pi} \cdot \vec{e}_{\varphi} </math>


==2. Végtelen hosszú egyenes vezető környezetében elhelyezkedő vezetőkeretben indukált feszültség meghatározása==
==2. Határozza meg egy végtelen hosszú egyenes vezető környezetében elhelyezkedő vezetőkeretben indukált feszültséget!==


Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezető síkjában egy téglalap alakú, <math>a \times b</math> méretű vezetőkeret helyezkedik el. A vezetőkeret <math>a</math> méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!
'''Feladat:''' Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezető síkjában egy téglalap alakú, <math>a \times b</math> méretű vezetőkeret helyezkedik el. A vezetőkeret <math>a</math> méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!




40. sor: 41. sor:
Ábra:
Ábra:


[[Fájl:Labor2 kép4.jpg]]
[[File:Labor2 kép4.jpg]]


A Faraday-féle indukciós törvény felhasználásával:
A Faraday-féle indukciós törvény felhasználásával:
62. sor: 63. sor:
Az integrálást tehát csak a <math>b</math> oldal szerint végezzük el, mivel <math>a</math> oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől <math>d</math>.
Az integrálást tehát csak a <math>b</math> oldal szerint végezzük el, mivel <math>a</math> oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől <math>d</math>.


==3. Vezetőkeretben indukált feszültség és kölcsönös induktivitás meghatározása==
==3. Határozza meg egy vezetőkeret rendszerben indukált feszültséget és kölcsönös induktivitást!==


Egy téglalap alakú, <math>A \times B</math> méretű, <math>I</math> szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, <math>a \times b</math> méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az <math>A</math> és <math>a</math> illetve <math>B</math> és <math>b</math> méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?
'''Feladat:''' Egy téglalap alakú, <math>A \times B</math> méretű, <math>I</math> szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, <math>a \times b</math> méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az <math>A</math> és <math>a</math> illetve <math>B</math> és <math>b</math> méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?




71. sor: 72. sor:
Ábra:
Ábra:


[[Fájl:Labor2 kép5.jpg]]
[[File:Labor2 kép5.jpg]]


Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása:
Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása:
100. sor: 101. sor:
Ábra:
Ábra:


[[Fájl:Labor2 kép6.jpg]]
[[File:Labor2 kép6.jpg]]


Vezessük be az alábbi jelöléseket:
Vezessük be az alábbi jelöléseket:
115. sor: 116. sor:
Szimmetria okok miatt az elektromos térerősségvektor mindig sugárirányú lesz, így a henger lapjain az integrál értéke zérus, míg hengerpaláston egy egyszerű szorzássá egyszerűsödik.
Szimmetria okok miatt az elektromos térerősségvektor mindig sugárirányú lesz, így a henger lapjain az integrál értéke zérus, míg hengerpaláston egy egyszerű szorzássá egyszerűsödik.


<math> E \cdot 2r\pi \cdot l={q \cdot l \over \varepsilon} \longrightarrow
<math> E(r) \cdot 2r\pi \cdot l={q \cdot l \over \varepsilon} \longrightarrow
\vec{E}(r) = {q \over 2 \pi \varepsilon} \cdot {1 \over r} \cdot \vec{e}_r</math>
\vec{E}(r) = {q \over 2 \pi \varepsilon} \cdot {1 \over r} \cdot \vec{e}_r</math>


157. sor: 158. sor:
Ábra:
Ábra:


[[Fájl:Labor2 kép7.jpg]]
[[File:Labor2 kép7.jpg]]




193. sor: 194. sor:


==6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!==
==6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!==
'''Műszaki adatok:'''


A CD11.4599.151 típusú szűrővel rendelkező hálózati csatlakozó 2 pólusú kapcsolója lengő vezetéken helyezkedik el.  Névleges áramerőssége 1A, általános célú berendezésekbe tervezték, 1 pólusú beépített olvadóbiztosítékkal.
A CD11.4599.151 típusú szűrővel rendelkező hálózati csatlakozó 2 pólusú kapcsolója lengő vezetéken helyezkedik el.  Névleges áramerőssége 1A, általános célú berendezésekbe tervezték, 1 pólusú beépített olvadóbiztosítékkal.
205. sor: 208. sor:




A zavarok fajtái:<br />
'''Működési elv:'''
A) Feszültségingadozások<br />
B) Harmónikus frekvenciájú inerferencia (100 Hz - 2 kHz)<br />
C) Tranziensek által okozott interferencia (300 MHz-ig)<br />
D) Szinusz szerű zavarok (akár 1 GHz-ig)


A szűrők alkotóelemei általában kondenzátorok és tekercsek, de gyakran alkalmaznak kondenzátor-kisütő ellenállásokat, túlfeszültség-védőket és igen nagyfrekvenciás fojtókat is. Emiatt a szűrő általában több egymást követő fokozatból áll.
A zavarokat feloszthatjuk közös és differenciális módusú zavarokra. Földeletlen zavarforrásból származó zavaró jel a tápáramhoz hasonló módon, az egyik vezetéken befolyik az eszközbe, a másikon pedig ki. Ezt nevezzük differenciális módusú (szimmetrikus) zavaró jelnek. A közös módusú (aszimmetrikus) zavar ezzel szemben (a mechanikai kialakítás következtében) mindkét tápvezetéken folyik be az eszközbe, és a földelésen folyik vissza a zavarforráshoz.
 
A zavarok terjedhetnek közvetlen vezetéssel, kapacitív és induktív csatolással valamint sugárzással.
 
A zavarokat feloszthatjuk közös és differenciális módusú zavarokra. Földeletlen zavarforrásból származó zavaró jel a tápáramhoz hasonló módon, az egyik vezetéken befolyik az eszközbe, a másikon pedig ki. Ezt nevezzük differenciális módusú zavaró jelnek. A közös módusú zavar ezzel szemben (a mechanikai kialakítás következtében) mindkét tápvezetéken folyik be az eszközbe, és a földelésen folyik vissza a zavarforráshoz.


A közös módusú zavarok csillapítása --> ld. 7. kérdés
A közös módusú zavarok csillapítása --> ld. 7. kérdés
226. sor: 221. sor:
Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes.
Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes.


[[Fájl:Labor2 kép8.jpg]]
[[File:Labor2 kép8.jpg]]
 
==8. Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!==


==8. Feladat==
A hálózati szűrő kapcsolási rajza:


Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!
[[File:Labor2_mérés3_ábra10.JPG|400px]]


{{Rejtett
<math> L_1 = L_2 = 10 \; mH, \;\;\; C_y = 2.2 \; nF, \;\;\; C_x = 68 \; nF</math>
|mutatott='''Megoldás'''
|szöveg=  


Az aszimmetrikus zavarjelekre (közös módusú zavarokra) érvényes modell: (L1 = L2 = 10 mH, Cy = 2,2 nF)


[[Fájl:Labor2 kép9.jpg]]


}}
A szűrő aszimmetrikus zavarjelre érvényes modellje (Fázis + Nulla --> Védőföld)


==9. Feladat==
[[File:Labor2 kép9.jpg|400px]]


Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!
<math>L=L_1=L_2, \;\;\; C=2 C_y</math>


{{Rejtett
==9. Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!==
|mutatott='''Megoldás'''
|szöveg=  


Ábra:
<math>L=L_1=L_2, \;\;\; C=2 C_y</math>


[[Fájl:Labor2 kép10.jpg]]


<math> \frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega C}}{j \omega L + \frac{1}{j \omega C}} = \frac{1}{j \omega L j \omega C + 1} = \frac{1}{1 - \omega^2 L C} </math>
<math> \frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega C}}{j \omega L + \frac{1}{j \omega C}} = \frac{1}{j \omega L j \omega C + 1} = \frac{1}{1 - \omega^2 L C} </math>
260. sor: 250. sor:
20 \cdot \log \left( \frac{1}{1 - \omega^2 L C} \right)</math>
20 \cdot \log \left( \frac{1}{1 - \omega^2 L C} \right)</math>


}}
==10. Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!==


==10. Feladat==
A hálózati szűrő kapcsolási rajza:


Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!
[[File:Labor2_mérés3_ábra10.JPG|400px]]


{{Rejtett
<math> L_1 = L_2 = 10 \; mH, \;\;\; C_y = 2.2 \; nF, \;\;\; C_x = 68 \; nF</math>
|mutatott='''Megoldás'''
|szöveg=  


[[Fájl:Labor2 kép11.jpg]]


}}


==11. Feladat==
A szűrő szimmetrikus zavarjelre érvényes modellje (Fázis --> Nulla)


Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!
[[File:Labor2_mérés3_ábra11.JPG|400px]]


{{Rejtett
==11. Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!==
|mutatott='''Megoldás'''
|szöveg=  


Ideális eset: <math>L_\mathrm{sz}=0</math> (szivárgási induktivitás) <math>\longrightarrow</math> A csillapítás egységnyi, a kimeneti feszültség bármely frekvencián megegyezik a bemeneti feszültséggel.
Ideális eset: <math>L_\mathrm{sz}=0</math> (szivárgási induktivitás) <math>\longrightarrow</math> A csillapítás egységnyi, a kimeneti feszültség bármely frekvencián megegyezik a bemeneti feszültséggel.
293. sor: 277. sor:
A gyakorlatban adott frekvencián <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}</math> méréssel meghatározható, majd a képlettel <math>L_\mathrm{sz}</math> számítható.
A gyakorlatban adott frekvencián <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}</math> méréssel meghatározható, majd a képlettel <math>L_\mathrm{sz}</math> számítható.


}}
==12. Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek?==
 
==12. Feladat==
 
Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=  
 
Ábra:
 
[[Fájl:Labor2 kép12.jpg]]
 
A vonalszerű vezetőben folyó áram által létrehozott mágneses térerősséget az általánosított Biot-Savart törvény adja meg:
 
<math> \mathbf{H}(\mathbf{r},t) = \frac{1}{4 \pi} \int_l\limits I \left( \mathbf{r'}, t-\frac{R}{v} \right) \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R^2} + \frac{1}{4 \pi v} \int_l\limits \frac{\partial I(\mathbf{r'}, t-\frac{R}{v})}{\partial t} \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R}; </math>
 
<math> R = |\mathbf{r}' - \mathbf{r}|, \quad \mathbf{R^0} = \frac{\mathbf{r} - \mathbf{r'}}{R}, \quad v = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}} </math>
 
Ebből kiolvasható, hogy az összefüggés első tagja az árammal arányos és a távolság négyzetével fordítottan arányos. A mágneses térerősségnek e tag által leírt komponensét közeltérnek vagy közeli térnek nevezzük.
 
Az összefüggés második tagja ellenben az áram idő szerinti deriváltjával arányos, és a távolsággal (és nem a négyzetével) fordítottan arányos. Ezt az összetevőt távoltérnek vagy távoli térnek nevezzük.
 
Tehát a vezetőhöz közel a közeli, messze a távoli tér a domináns. Az áram idő szerinti deriváltjával való arányosság szemléletesen úgy is leírható, hogy adott nagyságú áram esetén adott távolságra a vezetéktől a távoltér annál nagyobb a közeltérnél, minél nagyobb az '''I''' áram frekvenciája. Tehát előírt erőteret annál kisebb árammal tudunk létrehozni, minél nagyobb frekvenciát választunk.
 


<math>\vec{H}</math> ismeretében konkrét esetben <math>\vec{E}</math> rotációképzéssel számítható, de <math>\vec{E}</math> -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és <math>\frac{1}{R}</math>-rel arányos, egy közeli, az árammal és <math>\frac{1}{R^2}</math>-tel arányos összetevője, de van még egy harmadik, még közelebbi, <math>\frac{1}{R^3}</math> szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is.
Közeltérnek nevezzük az antenna közelében létrehozott elektromágneses sugárzási teret, amelynek összetevői szabad térben az antennától mért távolság négyzetével, illetve köbével csökkennek.


}}
Távoltérnek nevezzük az antennától elég nagy - kb. 10 hullámhossznyinál nagyobb - távolságban létrehozott elektromágneses sugárzási teret, amelynek összetevői szabad térben az antennától mért távolsággal fordítottan ( 1/R ) arányosak.


[[Category:Villanyalap]]
[[Kategória:Villamosmérnök]]