„Laboratórium 2 - ZH, 2004 tavasz” változatai közötti eltérés
(5 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva) | |||
9. sor: | 9. sor: | ||
[[File:Labor2_ZH_2004_ábra1.jpg|400px]] | [[File:Labor2_ZH_2004_ábra1.jpg|400px]] | ||
Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, | Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm | ||
Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén! | Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén! | ||
265. sor: | 265. sor: | ||
[[File:Labor2_ZH_2004_ábra5.jpg| | [[File:Labor2_ZH_2004_ábra5.jpg|500px]] | ||
}} | }} | ||
296. sor: | 296. sor: | ||
{{Rejtett | {{Rejtett | ||
|mutatott= | |mutatott='''Megoldás''' | ||
|szöveg= | |szöveg= | ||
315. sor: | 315. sor: | ||
A zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják: | A zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják: | ||
<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ | <math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ 1 & 0 \end{array} \right] </math> | ||
<math> \varphi_c(s) = det[sI-(A-B K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^ | <math> \varphi_c(s) = det[sI-(A-B K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^2+3s+2=(s+1)(s+2) </math>. | ||
332. sor: | 332. sor: | ||
|szöveg= | |szöveg= | ||
[[File: | [[File:Labor2_ZH_2014_ábra8.JPG|600px]] | ||
A jelek elnevezései és dimenziói: | |||
*<math>r</math> - Alapjel <math>[C^{\circ}]</math> | |||
*<math>u</math> - Vezérlőjel <math>[V]</math> | |||
*<math>u_{k}</math> - Korlátozott vezérlőjel <math>[V]</math> | |||
*<math>\vartheta</math> - Hőmérséklet <math>[C^{\circ}]</math> | |||
}} | }} | ||
[[ | [[Kategória:Villamosmérnök]] |
A lap jelenlegi, 2016. május 9., 15:11-kori változata
1. Erősítő kapcsolás
Adott az alábbi kapcsolás:
Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm
Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!
Határozza meg R3 optimális értékét!
2. NYÁK tervezés
A NYÁK-tervező programok milyen nézetben (alul/felül) ábrázolják a NYÁK-rétegeket? (A legalsó réteget honnan látja a tervező: felülről, a felső réteg felől, vagy alulról?)
Mi a Gerber-file?
Soroljon fel három NYÁK-tervezési ökölszabályt!
Mi a via és a pin?
3. Hálózati szűrő
Egy hálózati szűrő kapcsolási rajza az alábbi ábrán látható:
Adja meg a szűrő aszimmetrikus zavarjelre vonatkozó érvényes modelljét! Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelekre!
4. Hall-szondás árammérő
Írja le a váltakozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!
5-6. Mérőerősítő
Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.
Az ellenállások adatai:
- - Az ellenállások tűrése
Az erősítő adatai:
- - Az egységnyi erősítéshez tartozó határfrekvencia
- - Fázistartalék
Határozza meg a fenti kapcsolás:
- (a) eredő szimmetrikus feszültségerősítését
- (b) az erősítés statikus hibáját
- (c) közös feszültségerősítését
- (d) eredő (-3 dB-es) felső határfrekvenciáját!
Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!
Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk:
7. A/D átalakító
Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban!
Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!
8. Fáziszárt hurok
Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!
9. Szemábra
Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkül" be egy szemábra?
10. Állapotteres szabályozás
Adott egy folytonos idejű szakasz állapotteres leírása:
A szakaszt állapot-visszacsatolással kompenzáljuk, ahol K = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?
11. Hőmérséklet-szabályozás
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!