„Laboratórium 2 - ZH, 2004 tavasz” változatai közötti eltérés
(9 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva) | |||
9. sor: | 9. sor: | ||
[[File:Labor2_ZH_2004_ábra1.jpg|400px]] | [[File:Labor2_ZH_2004_ábra1.jpg|400px]] | ||
Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, | Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm | ||
Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén! | Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén! | ||
265. sor: | 265. sor: | ||
[[File:Labor2_ZH_2004_ábra5.jpg| | [[File:Labor2_ZH_2004_ábra5.jpg|500px]] | ||
}} | }} | ||
287. sor: | 287. sor: | ||
}} | }} | ||
==10.== | ==10. Állapotteres szabályozás== | ||
Adott egy folytonos idejű szakasz állapotteres leírása: | Adott egy folytonos idejű szakasz állapotteres leírása: | ||
[[File:Labor2_ZH_2004_ábra7.jpg|500px]] | |||
A szakaszt <math>u=-Kx</math> állapot-visszacsatolással kompenzáljuk, ahol K = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer? | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
A | A szakasz karakterisztikus egyenlete: | ||
<math> \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]</math> <math>= s^2+s-2=(s-1)\cdot(s+2)=0 </math> | |||
<math> \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]</math> <math>= s^2+s-2=(s-1)(s+2)=0 </math> | |||
Melynek gyökei a szakasz pólusai (sajátértékek), azaz <math>s_1=1</math> és <math>s_2=-2</math>. Mivel <math>s_1</math> valós része pozitív, ezért a szakasz instabil. | |||
<math> | A zárt rendszer állapotegyenlete <math>u=-Kx</math> behelyettesítés után: | ||
<math> \dot{x}=(A-B K)\cdot x </math> | |||
<math> y= C \cdot x </math> | <math> y= C \cdot x </math> | ||
<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ -1 & | A zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják: | ||
<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ 1 & 0 \end{array} \right] </math> | |||
<math> \varphi_c(s) = det[sI-(A-B K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^2+3s+2=(s+1)(s+2) </math>. | |||
Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil. | Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil. | ||
==11.== | |||
}} | |||
==11. Hőmérséklet-szabályozás== | |||
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját! | Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját! | ||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
[[File:Labor2_ZH_2014_ábra8.JPG|600px]] | |||
A jelek elnevezései és dimenziói: | |||
*<math>r</math> - Alapjel <math>[C^{\circ}]</math> | |||
*<math>u</math> - Vezérlőjel <math>[V]</math> | |||
*<math>u_{k}</math> - Korlátozott vezérlőjel <math>[V]</math> | |||
*<math>\vartheta</math> - Hőmérséklet <math>[C^{\circ}]</math> | |||
}} | |||
[[Kategória:Villamosmérnök]] |