„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés

Kiskoza (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
 
(2 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva)
37. sor: 37. sor:
*A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak).
*A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak).
*A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk.
*A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk.
**Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol. [[File:2_3_2.png|300px]]
**Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol. [[File:Algel vizsga 2013tavasz V1 2 2fia.png|300px]]
***A bal részfában az elemek kisebbek, mint S1.
***A bal részfában az elemek kisebbek, mint S1.
***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1).
***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1).
44. sor: 44. sor:
***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2.
***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2.
***A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2).  
***A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2).  
:::::::::::::::::[[File:2_3_pelda.png|400px]]


'''Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!'''
'''Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!'''


<math>log_2n+1\leq m \leq log_3n+1</math>, ahol <math>m</math> a fa szintszáma.
<math>log_2n+1\leq m \leq log_3n+1</math>, ahol <math>m</math> a fa szintszáma.
$$$ Ez nem pont fordítva van a dián? $$$


''Bizonyítás:''
''Bizonyítás:''