„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés
(6 közbenső módosítás, amit 3 másik szerkesztő végzett, nincs mutatva) | |||
3. sor: | 3. sor: | ||
==2013.06.06. vizsga megoldásai== | ==2013.06.06. vizsga megoldásai== | ||
===1. Feladat=== | ===1. Feladat=== | ||
Ebben a feladatban a Floyd algoritmussal kapcsolatos kérdésekre kell válaszolnia. (A Floyd-algoritmus egy grában minden pontpárra meghatározza a köztük levő legrövidebb út hosszát.) | |||
'''(a)''' Mit jelöl az <math> F_k </math> mátrix <math> F_k[i,j] </math> eleme? | |||
'''(b)''' Hogyan kell kiszámolni az <math> F_{k-1} </math> mátrixból az <math> F_k </math> mátrixot? | |||
'''(c)''' Igazolja, hogy ez a kiszámítási mód helyes! | |||
'''(d)''' Mennyi a lépésszáma a '''(b)''' lépés egyszeri végrehajtásának? (A lépésszámot nem kell igazolni.) | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
'''a)''' <math> F_k[i,j] </math> azon <math> i \rightarrow j </math> utak legrövidebbjeinek a hosszát tartalmazza, amelyek közbülső pontjai <math>k</math>-nál nem nagyobb sorszámúak. ''(Magyarul: Az <math> F_k[i,j] </math> azt mondja meg, hogy <math>i</math>-ből <math>j</math>-be mennyi a legrövidebb út összsúlya, ha csak az első <math>k</math> darab csúcsot használtuk.)'' | |||
'''b)''' <math> F_k[i,j]:=min\left \{ F_{k-1}[i,k]+F_{k-1}[k,j],F_{k-1}[i,j]\right \} </math> ''<math>(</math>Vagyis vagy az <math> i \rightarrow k \rightarrow j </math> lesz a legrövidebb út, vagy "marad a régi" <math> i \rightarrow j .)</math>'' | |||
'''c)''' Tulajdonképpen az előzőből következik. Hiszen vagy nem változik az új csúccsal a legrövidebb út a 2 pont között <math> (i \rightarrow j) </math>, vagy ha igen, akkor az a <math> (i \rightarrow k) + (k \rightarrow j) </math> lesz az. | |||
'''d)''' <math> O(n^2) </math>. ''<math>(</math>Maga az algoritmus <math>O(n^3)</math>, de csúcsonként <math> O(n^2) </math>, vagyis <math> n \cdot O(n^2) = O(n^3) ).</math>'' | |||
}} | }} | ||
23. sor: | 37. sor: | ||
*A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak). | *A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak). | ||
*A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk. | *A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk. | ||
**Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol. [[File: | **Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol. [[File:Algel vizsga 2013tavasz V1 2 2fia.png|300px]] | ||
***A bal részfában az elemek kisebbek, mint S1. | ***A bal részfában az elemek kisebbek, mint S1. | ||
***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1). | ***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1). | ||
**Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 kulcsot tárol. [[File: | **Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 kulcsot tárol. [[File:Algel_vizsga_2013tavasz_V1_2_3fia.png|400px]] | ||
***A bal részfában az elemek kisebbek, mint S1. | ***A bal részfában az elemek kisebbek, mint S1. | ||
***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2. | ***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2. | ||
***A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2). | ***A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2). | ||
'''Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!''' | '''Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!''' | ||
<math>log_2n+1\leq m \leq log_3n+1</math>, ahol <math>m</math> a fa szintszáma. | <math>log_2n+1\leq m \leq log_3n+1</math>, ahol <math>m</math> a fa szintszáma. | ||
$$$ Ez nem pont fordítva van a dián? $$$ | |||
''Bizonyítás:'' | ''Bizonyítás:'' | ||
95. sor: | 110. sor: | ||
}} | }} | ||
===6. Feladat=== | ===6. Feladat (Van megoldás)=== | ||
Egy ország ''n'' kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében <math>O(n^2)</math> időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak). | Egy ország ''n'' kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében <math>O(n^2)</math> időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak). | ||
{{Rejtett | {{Rejtett | ||
101. sor: | 116. sor: | ||
|szöveg= | |szöveg= | ||
*Első lépésben az élsúly legyen a <math> Profit = -(Bevetel - Kiadas) .</math> | |||
*Vegyük fel az összes profitot termelő, vagy legalábbis veszteséget nem termelő éleket <math> (Profit \geq 0 )</math> <math> \Rightarrow O(n^2) </math> lépés. Ez legyen mondjuk a G gráf. | |||
*Két eshetőség áll fenn: | |||
**Ha a G gráf összefüggő, akkor jók is vagyunk, nincs további teendőnk, meg is vagyunk. | |||
**Ha nem összefüggő, akkor: | |||
***Az egyes komponenseket tekintsük egy pontnak. Minden olyan él, ami ebbe a komponensbe megy, menjen ebbe a pontba. Így kapunk egy F gráfot. | |||
***Erre az F gráfra hívunk meg egy Prim-algoritmust, ami <math> O(n^2) </math> időben keres az F gráfban egy minimális feszítőfát ''(vagyis a komponenseket - ami most jelenleg 1-1 pont a gráfban - a lehető legkisebb költségű élekkel köti össze)''. | |||
*Tehát Prim-algoritmussal, vagy anélkül <math> O(n^2) </math> időben megmondjuk, hogy mely hajójáratok indításával lesz az évi bevétel a legmagasabb. | |||
}} | }} | ||
A lap jelenlegi, 2015. június 18., 18:22-kori változata
2013.06.06. vizsga megoldásai
1. Feladat
Ebben a feladatban a Floyd algoritmussal kapcsolatos kérdésekre kell válaszolnia. (A Floyd-algoritmus egy grában minden pontpárra meghatározza a köztük levő legrövidebb út hosszát.)
(a) Mit jelöl az mátrix eleme?
(b) Hogyan kell kiszámolni az mátrixból az mátrixot?
(c) Igazolja, hogy ez a kiszámítási mód helyes!
(d) Mennyi a lépésszáma a (b) lépés egyszeri végrehajtásának? (A lépésszámot nem kell igazolni.)
a) azon utak legrövidebbjeinek a hosszát tartalmazza, amelyek közbülső pontjai -nál nem nagyobb sorszámúak. (Magyarul: Az azt mondja meg, hogy -ből -be mennyi a legrövidebb út összsúlya, ha csak az első darab csúcsot használtuk.)
b) Vagyis vagy az lesz a legrövidebb út, vagy "marad a régi"
c) Tulajdonképpen az előzőből következik. Hiszen vagy nem változik az új csúccsal a legrövidebb út a 2 pont között , vagy ha igen, akkor az a lesz az.
d) . Maga az algoritmus , de csúcsonként , vagyis2. Feladat (Van megoldás)
Adja meg a 2-3 fa definícióját! Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!
Adja meg a 2-3 fa definícióját!
- Elemeket csak a levelekben tárolunk.
- Az elemek balról jobbra növekvő sorrendben állnak.
- Minden belső csúcsnak 2, vagy 3 fia lehet, se több, se kevesebb. (Kivéve, ha csak 1 elemet tárolunk a fában, mert akkor a gyökérnek csak 1 fia van.)
- A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak).
- A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk.
- Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol.
- A bal részfában az elemek kisebbek, mint S1.
- A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1).
- Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 kulcsot tárol.
- A bal részfában az elemek kisebbek, mint S1.
- A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2.
- A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2).
- Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol.
Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!
, ahol a fa szintszáma.
$$$ Ez nem pont fordítva van a dián? $$$
Bizonyítás:
-
- Minden belső csúcsnak legalább 2 fia van, így az szinten legalább csúcs van, tehát:
-
- Minden belső csúcsnak maximum 3 fia van, így az szinten maximum csúcs van, tehát:
3. Feladat
TODO
4. Feladat (Van megoldás)
Van egy tábla x kockákból álló. Az x -es mátrixban adott, hogy az egyes kockákban hány mogyoró van (a mogyorók nem lógnak át egyik kockából a másikba). Két gyerek akar osztozkodni a csokin, úgy, hogy a csokit kéfelé törik (egyenes vonal mentén, párhuzamosan a tábla valamelyik szélével). Egy osztkozkodás igazságtalansági faktorát a következőképpen kaphatjuk: ha az egyik darabban kocka csoki, és darab mogyoró van, a másikban pedig kocka csoki és darab mogyoró, akkor az igazságtalansági faktor . Adjon lépést használó algoritmust, ami eldönti, hogy melyik szétosztásnak a legkisebb az igazságtalansági faktora. (Egy lépésnek számít, ha kiolvasunk egy értéket az mátrixból vagy ha összeadást, illetve kivonást hajtunk végre két számon.)
- Hozzunk létre egy elemű tömböt, ahol az cellában az szerepel, hogy az mátrix annyiadik oszlopában mennyi a . (ez kiolvasás, és összeadás, vagyis .
- Hozzunk létre egy elemű tömböt, ahol az cellában az szerepel, hogy az mátrix annyiadik sorában mennyi a . (ez kiolvasás, és összeadás, vagyis .
- Hozzunk létre egy x -es tömböt, ahol az 1. sorban balról jobbra nézzük, mennyi a , a 2. sorban pedig jobbról balra. 1. sor a , 2. sor pedig a hozzá tartozó
- majd .
- majd .
- Hozzunk létre egy x -es tömböt, ahol az 1. sorban fentről lefele nézzük, mennyi a , a 2. sorban pedig alulról felfele. 1. sor a , 2. sor pedig a hozzá tartozó
- majd .
- majd .
- Az és tömbök létrehozása és lépést igényel.
- Nincs is más dolgunk, mint végigmenni az és tömbökön úgy, hogy az oszlopban vesszük a 2 szám különbségének abszolút értékét, vagyis az igazságtalansági faktort számoljuk, és mindig elmentjük egy változóba a minimumot, és a ehhez tartozó törésvonalat. Ez is és lépés.
- Összesen tehát lépéssel megoldottuk a feladatot.
5. Feladat (Van megoldás)
Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .
Van olyan és , hogy esetén
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
, ahol , vagyis
ha (A lényeg, hogy felülről becsüljük!)
Tehát6. Feladat (Van megoldás)
Egy ország n kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak).
- Első lépésben az élsúly legyen a
- Vegyük fel az összes profitot termelő, vagy legalábbis veszteséget nem termelő éleket lépés. Ez legyen mondjuk a G gráf.
- Két eshetőség áll fenn:
- Ha a G gráf összefüggő, akkor jók is vagyunk, nincs további teendőnk, meg is vagyunk.
- Ha nem összefüggő, akkor:
- Az egyes komponenseket tekintsük egy pontnak. Minden olyan él, ami ebbe a komponensbe megy, menjen ebbe a pontba. Így kapunk egy F gráfot.
- Erre az F gráfra hívunk meg egy Prim-algoritmust, ami időben keres az F gráfban egy minimális feszítőfát (vagyis a komponenseket - ami most jelenleg 1-1 pont a gráfban - a lehető legkisebb költségű élekkel köti össze).
- Tehát Prim-algoritmussal, vagy anélkül időben megmondjuk, hogy mely hajójáratok indításával lesz az évi bevétel a legmagasabb.
7. Feladat
TODO
8. Feladat
TODO