„Matematika A1 - Vizsga: 2007.01.23” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
Szikszayl (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
 
(Egy közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{noautonum}}
__NOTOC__
{{vissza|Matematika A1a - Analízis}}


{{vissza|Matematika A1a - Analízis}}
===1. Feladat===


===1. Adja meg az összes olyan <math>z</math> komplex számot, melyre <math>z^4=2j\frac{-8+6j}{3+4j}</math>.===
Adja meg az összes olyan <math>z</math> komplex számot, melyre <math>z^4=2j\frac{-8+6j}{3+4j}</math>.


{{Rejtett
{{Rejtett
23. sor: 24. sor:
}}
}}


===2. Határozza meg az alábbi határértékeket!===
===2. Feladat===
 
Határozza meg az alábbi határértékeket!


<math>a,\;\lim_{x\to\infty}\frac{3^{n+2}+n^3}{3^n-n}=?</math>
<math>a,\;\lim_{x\to\infty}\frac{3^{n+2}+n^3}{3^n-n}=?</math>
48. sor: 51. sor:
}}
}}


===3. Melyik igaz, melyik nem:===
===3. Feladat===
 
Melyik igaz, melyik nem:


a, Ha <math>f</math> folytonos <math>[a,b]</math>-n, akkor <math>f</math> korlátos <math>[a,b]</math>-n
a, Ha <math>f</math> folytonos <math>[a,b]</math>-n, akkor <math>f</math> korlátos <math>[a,b]</math>-n
70. sor: 75. sor:
}}
}}


===4. Hány megoldása van az <math>x^{13}-13x-9=0</math> egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!===
===4. Feladat===
 
Hány megoldása van az <math>x^{13}-13x-9=0</math> egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!


{{Rejtett
{{Rejtett
112. sor: 119. sor:
}}
}}


===5. Határozza meg az alábbi integrál értékét!===
===5. Feladat===
 
Határozza meg az alábbi integrál értékét!


<math>\int_1^e ln^2x\mathrm{d}x=?</math>
<math>\int_1^e ln^2x\mathrm{d}x=?</math>
141. sor: 150. sor:
}}
}}


===6. Határozza meg az alábbi határértéket!===
===6. Feladat===
 
Határozza meg az alábbi határértéket!


<math>\lim_{x\to\infty}\frac{\int_0^x \arctan{(t)}\mathrm{d}t}{x}=?</math>
<math>\lim_{x\to\infty}\frac{\int_0^x \arctan{(t)}\mathrm{d}t}{x}=?</math>
177. sor: 188. sor:
}}
}}


[[Category:Villanyalap]]
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2014. március 13., 18:49-kori változata


1. Feladat

Adja meg az összes olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z} komplex számot, melyre Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^4=2j\frac{-8+6j}{3+4j}} .

Megoldás

Végezzük el először a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2j} -vel való beszorzást.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^4=\frac{-16j-12}{3+4j}=\frac{-4*(3+4j)}{3+4j}=-4}

Mivel a komplex síkon a (-4;0) koordinátájú pontba mutató helyvektor forgásszöge Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \pi} és nagysága 4, így:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^4=-4=-4+0*j=4*(cos\pi+j*sin\pi)} Mert

Ebből kell most negyedik gyököt vonni:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z=\sqrt{2}*(cos\frac{\pi+2k\pi}{4}+j*sin\frac{\pi+2k\pi}{4})} ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=0,1,2,3}

2. Feladat

Határozza meg az alábbi határértékeket!

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a,\;\lim_{x\to\infty}\frac{3^{n+2}+n^3}{3^n-n}=?}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b,\;\lim_{x\to\infty}\frac{(3-\frac{1}{n})^n}{3^n}=?}

Megoldás

a, Feladat:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{x\to\infty}\frac{3^{n+2}+n^3}{3^n-n}= \lim_{x\to\infty}\frac{3^2+{n^3}/{3^n}}{1-{n}/{3^n}}= \frac{9+0}{1-0}=9}

b, Feladat:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{x\to\infty}\frac{(3-\frac{1}{n})^n}{3^n}= \lim_{x\to\infty}\left(\frac{3-\frac{1}{n}}{3}\right)^n= \lim_{x\to\infty}\left(1-\frac{\frac{1}{3}}{n}\right)^n= e^{-\frac{1}{3}}}

3. Feladat

Melyik igaz, melyik nem:

a, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} folytonos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle [a,b]} -n, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} korlátos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle [a,b]} -n

b, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} folytonos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} korlátos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n

c, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} folytonos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n, akkor véges sok pont kivételével Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} deriválható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n

d, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} értelmezett és véges sok pont kivételével deriválható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n akkor folytonos itt

e, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} deriválható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} folytonos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a,b)} -n

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

4. Feladat

Hány megoldása van az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x^{13}-13x-9=0} egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!

Megoldás

Mivel 13-ad fokú egyenletet nem tudunk megoldani, függvényvizsgálattal kell megkeresni a megoldásokat. A feladat ekvivalens a következővel:

Hány zérushelye van az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x)=x^{13}-13x-9} függvénynek?

Deriváljuk a függvényt először:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f'(x)=13x^{12}-13}

Ahol a derivált nulla, ott lokális szélsőértéke van a függvénynek.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 13x^{12}-13=0} , ebből Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x=-1} vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x=1}

Most megnézzük, hogy ezek maximum vagy minimum helyek. Ezt a második derivált segítségével tudjuk megnézni, amibe ha vissza helyettesítjük az x-et, a következőt tudjuk meg:

ha f"(x)>0 a függvény konvex, és minimuma van,

ha f"(x)<0, a függvény konkáv, és maximuma van.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f''(x)=156x^{11}} , ebből Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f''(-1)=-156} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f''(1)=156} .

Tehát a függvénynek (-1)-ben lokális maximuma, 1-ben lokális minimuma van.

Így igaz, hogy a függvény a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (\infty,-1)} intervallumon szigorúan monoton nő, a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (-1,1)} intervallumon szigorúan monoton csökken, míg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (1,\infty)} intervallumon szigorúan monoton nő.

Emiatt és mivel az f(x) függvény folytonos, így lehet 1, 2 vagy 3 zérushelye, amit a következőképpen derítünk ki:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(-1)=3} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(1)=-21} -ből és az előzőekből következik, hogy -1 és 1 között van zérushely, továbbá, hogy -1 előtt és 1 után is van egy-egy.

Most már csak a -1 és 1 közötti zérushely előjelét kell eldönteni, legkönnyebb így: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(0)=-9} , tehát -1 és 0 közt van a zérushely, így előjele negatív.

Tehát az egyenletnek 3 megoldása van, két negatív és egy pozitív.

5. Feladat

Határozza meg az alábbi integrál értékét!

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_1^e ln^2x\mathrm{d}x=?}

Megoldás

A megoldás során azt a trükköt alkalmazzuk, hogy az integrálandó függvényt beszorozzuk 1-el, majd pedig ezt integráljuk parciálisan.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v'(x)=1 \;\;\;\&\;\;\; u(x)=ln^2x}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(x)=x \;\;\;\&\;\;\; u'(x)=2{lnx \over x}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_1^e 1*ln^2x\mathrm{d}x=\left[xln^2x\right]_1^e-\int_1^e x*2\frac{lnx}{x}\mathrm{d}x= [xln^2x]_1^e-2\int_1^e lnx\mathrm{d}x=}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_1^e lnx\mathrm{d}x \;} -et az előző módszerrel ismét parciálisan integráljuk integráljuk:

6. Feladat

Határozza meg az alábbi határértéket!

Megoldás

Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:

Most ezt visszahelyettesítjük:


A második kifejezést pedig 2-szer L'Hospital-juk:


Tehát a feladat megoldása: