„Fizika1 vizsga 2009.06.10.” változatai közötti eltérés

Lordviktor (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
a Kategóriabesorolás
 
(8 közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{FejlesztesAlatt}}
Ez egy eltérő stílusú vizsga volt, a pontozási rendszere ismeretlen. Már nem ilyen stílusúak a vizsgák, de felkészüléshez ideális.


==Kiegészítendő mondatok==
==Kiegészítendő mondatok==
A feladatok [[Media:Fizika1i_vizsga-2009-06-10_2.jpg | scannelt változata]].
;# Ha egy részecske helye x(t)= 4 + t<sup>2</sup> + t<sup>3</sup>, átlaggyorsulása 1 és 3 s között ........................................................
;# Ha egy részecske helye x(t)= 4 + t<sup>2</sup> + t<sup>3</sup>, átlaggyorsulása 1 és 3 s között ........................................................
;# Ha a gravitációs erővonalakkal ellentétel irányban mozdul el egy tömegpont, akkor potenciális energiája ........................................................
;# Ha a gravitációs erővonalakkal ellentétel irányban mozdul el egy tömegpont, akkor potenciális energiája ........................................................
36. sor: 37. sor:


==Kifejtős kérdések==
==Kifejtős kérdések==
Kérdésenként 1 pont
A feladatok scannelt változata: [[Media:Fizika1i_vizsga-2009-06-10_3.jpg | 1-2.feladat]], [[Media:Fizika1i_vizsga-2009-06-10_4.jpg|3-4. feladat]].
 
Max. 12 pont, feladatonként 3 pont


<b>
<b>
*1.
*1.
**a. Írja fel pontrendszerre az impulzustételt!
**a. Írja fel pontrendszerre az impulzustételt!(1p)
**b. Mi a tömegközéppont definíciója?
**b. Mi a tömegközéppont definíciója?( 1p)
**c. Mit állít a tömegközéppont-tétel?
**c. Mit állít a tömegközéppont-tétel? (1p)
*2.
*2.
**a. Adja meg a tehetetlenségi nyomaték definícióját!
**a. Adja meg a tehetetlenségi nyomaték definícióját! (1p)
**b. Mit mond ki a Steiner-tétel (párhuzamos tengelyek tétele)?
**b. Mit mond ki a Steiner-tétel (párhuzamos tengelyek tétele)? (1p)
**c. Írja fel rögzített tengely körül forgó merev test mozgásegyenletét!
**c. Írja fel rögzített tengely körül forgó merev test mozgásegyenletét! (1p)
*3.
*3.
**a. Mi az entrópia infinitezimális megváltozásának definíciója a termodinamikában?
**a. Mi az entrópia infinitezimális megváltozásának definíciója a termodinamikában? (1p)
**b. Hogyan számíthatjuk ideális gáz tetszőleges reverzibilis állapotváltozásra az entrópia megváltozását?
**b. Hogyan számíthatjuk ideális gáz tetszőleges reverzibilis állapotváltozásra az entrópia megváltozását? (1p)
**c. Irreverzibilis folyamatoknál (pl. hőmérséklet-kiegyenlítődés) hogyan változik az univerzum entrópiája?
**c. Irreverzibilis folyamatoknál (pl. hőmérséklet-kiegyenlítődés) hogyan változik az univerzum entrópiája? (1p)
*4.  
*4.  
**
**a. Írja fel az elektromos potenciálkülönbség definícióját! (1p)
**b. Írja fel az elektromos potenciál definícióját! (1p)
**c. Az elektromos potenciál ismeretében hogyan számíthatjuk ki a térerősséget? (1p)
*5.
**a. Írja fel az elektrosztatika Gauss-tételét vákuumban! (1p)
**b. Az elektrosztatika Gauss-tételének felhasználásával határozza meg egy Q töltéssel rendelkező fémgömb elektromos terét a gömbön kívül! Késítsen magyarázó rajzot! (2p)
</b>
</b>


==Feladatok==
==Feladatok==
A feladatok [[Media:Fizika1i_vizsga-2009-06-10_1.jpg| scannelt változata]].


;1. Egy gépkocsi 200m sugarú, vízszintes körpályán mozog. Amikor a sebesség nagysága 10 m/s, a gyorsulás-vektor 120°-os szöget zár be a sebességvektorral. Ekkor a tangenciális gyorsulás nagysága:
;1. Egy gépkocsi 200m sugarú, vízszintes körpályán mozog. Amikor a sebesség nagysága 10 m/s, a gyorsulás-vektor 120°-os szöget zár be a sebességvektorral. Ekkor a tangenciális gyorsulás nagysága:
123. sor: 132. sor:
B  B  B  A  D  A  D  C  B  C
B  B  B  A  D  A  D  C  B  C
</pre>
</pre>
A számolós feladatok megoldása:<br />
[[File:Fizika1i_vizsga-2009-06-10_mego1.jpg]]
[[File:Fizika1i_vizsga-2009-06-10_mego2.jpg]]
<br />
<br />
-- [[Lord_Viktor|Lord Viktor]] - 2013.01.25.
[[Category:Infoalap]]