
1

�����������	
�
��
�
���
��

��
��
����� �����	��� ��

��
���



2

����
��

• What is it?
• Why is it different?
• Types of models
• How to start
• Where do we go next?
• Challenges
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“the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns 
in data.” --- Fayyad

“the analysis of (often large) observational data sets to 
find unsuspected relationships and to summarize the data 
in novel ways that are both understandable and useful to 
the data owner” D.Hand 

“a knowledge discovery process of extracting previously 
unknown, actionable information from very large data 
bases”--- Zornes

“ a process that uses a variety of data analysis tools to 
discover patterns and relationships in data that may be 
used to make valid predictions.” ---Edelstein



4

�
�
�����������
�������
�
�����������
������

�� ��
�
�� ��
�


• KDD 1998 cup 
• Mailing list of 3.5 million potential 

donors
• Lapsed donors 

�Made their last donation to PVA 13 to 
24 months prior to June 1997

�200,000 (training and test sets)

• Who should get the current 
mailing?

• Cost effective strategy?
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• If entire list (100,000 
donors) are mailed, net 
donation is $10,500

• Using data mining 
techniques, this was 
increased 41.37%
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Data = $$Data = $$
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• Ingot cracking

�953 30,000 lb. Ingots
�20% cracking rate
�$30,000 per recast
�90 potential explanatory 

variables
�Water composition (reduced)
�Metal composition
�Process variables
�Other environmental variables 
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• 42800 mature policies
• 65 potential predictors

�Tree model found industry, vehicle age, 
numbers of vehicles, usage and location
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• Users
� Domain experts, not statisticians 
� Have too much data
� Want automatic methods
� Want useful information

• Problem size
� Number of rows
� Number of variables 
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� Data mining tools need no guidance.
� Data mining models explain behavior.
� Data mining requires no data analysis skill.
� Data mining eliminates the need to 

understand your business and your data
� Data mining tools are “different” from 

statistics. 
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• If item A is part of an event, then x % of the time 
(the confidence factor) item B is part of the 
event.
� If low fat cottage cheese and non-fat yogurt are 

bought, then 85% of the time skim milk is purchased.
� If corn chips are purchased, 65% of the time cola is 

purchased, unless there is a promotion, in which case 
85% of the time cola is purchased.

• Quiz: What grocery item’s purchases is most 
highly associated with shampoo purchases?
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• Made up story?
• Unrepeatable --

happened once.
• Lessons learned?
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Large amount of data:

Data Collection

Sample?

Reasonable Price for Sofware

Presentation Medium

Nice Place for a Meeting

1,000,000 rows, 3000 columns 1,000 rows, 30 columns

Happenstance Data Designed Surveys, Experiments

Why bother? We have big, 
parallel computers

You bet! We even get 
error estimates.

$1,000,000 a year $599 with coupon from Amstat News

PowerPoint, what else? Overhead foils, of course!

Aspen in January, Maui in     
February,…

Indianapolis in August, Dallas in 
August, Baltimore in August, 
Atlanta in August,…
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• Flexible models
• Automatic
• Prediction often most 

important 
• Computation matters

• Variable selection and 
overfitting are 
problems

• Particular model and 
error structure

• Understanding, 
confidence intervals

• Computation not 
critical

• Variable selection and 
model selection are 
still problems
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• George Box
� All models are wrong, but some are useful
� Statisticians, like artists, have the bad habit of 

falling in love with their models

• The model is no better than the data
• Twyman’s law

� If it looks interesting, it’s probably wrong

• De Veaux’s corollary
� If it’s not wrong, it’s probably obvious
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• Build data mining database
• Explore data
• Prepare data for modeling

60% to 95% of the time is spent 
preparing the data

60% to 95% of the time is spent 60% to 95% of the time is spent 
preparing the datapreparing the data
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Term Estimate Std Error t Ratio Prob>|t|

Intercept 0.806 0.427 1.890 0.059
x1 7.269 0.273 26.590 <.0001
x2 7.289 0.281 25.940 <.0001
x3 -0.719 0.287 -2.500 0.012
x4 9.769 0.273 35.810 <.0001
x5 4.834 0.275 17.590 <.0001
x6 -0.456 0.280 -1.630 0.104
x7 0.123 0.270 0.460 0.647
x8 -0.349 0.276 -1.270 0.206
x9 -0.578 0.285 -2.030 0.043
x10 0.080 0.280 0.280 0.777

R-squared:  76.1% Train        73.3% Test
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Term  Estimate Std Error t Ratio Prob>|t|
Intercept 0.561 0.328 1.710 0.087
x1 7.252 0.273 26.550 <.0001
x2 7.311 0.280 26.110 <.0001
x3 -0.767 0.286 -2.690 0.007
x4 9.747 0.272 35.790 <.0001
x5 4.799 0.274 17.510 <.0001
x9 -0.609 0.284 -2.140 0.032

R-squared  76.0% on Train     73.4% Test
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Term  Estimate Std Error t Ratio Prob>|t|

Intercept 0.000 0.000 . .
x1 7.204 0.169 42.510 <.0001
(x1-0.49573)*(x1-0.49573) -12.137 0.682 -17.790 <.0001
x2 7.313 0.173 42.380 <.0001
(x2-0.48895)*(x2-0.48895) -11.289 0.688 -16.410 <.0001
x3 -1.010 0.179 -5.660 <.0001
(x3-0.46706)*(x3-0.46706) 20.658 0.703 29.390 <.0001
x4 10.169 0.172 59.070 0.000
x5 5.135 0.168 30.610 <.0001
(x5-0.49425)*(x5-0.49425) 1.714 0.694 2.470 0.014
x7 0.244 0.165 1.480 0.140
x8 0.079 0.171 0.460 0.646
(x1-0.49573)*(x2-0.48895) 2.370 0.639 3.710 0.000
(x2-0.48895)*(x4-0.49038) -0.322 0.626 -0.510 0.607
(x3-0.46706)*(x7-0.4962) 1.273 0.626 2.030 0.042
(x4-0.49038)*(x8-0.4975) -1.015 0.603 -1.680 0.092
(x7-0.4962)*(x8-0.4975) -1.283 0.601 -2.130 0.033

R-squared 90.0% Train      88.5% Test
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• Higher order terms? 
• When to stop? 
• Transformations?
• Too simple: underfitting – bias
• Too complex: inconsistent 

predictions, overfitting – high variance 
• Selecting models is Occam’s razor

� Keep goals of interpretation vs. Prediction in 
mind
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• New predictor based on original 
predictors

• Often linear:

� Principal components
� Factor analysis
� Multidimensional scaling

• But also simple transformations 
and ratios

ppi xbxbz +++= ...11α
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• In original regression
� Find new features, use as predictors

• Find them automatically
� Projection pursuit regression

� Z’s are linear, f’s are arbitrary

� Neural network
�Z’s are linear, f’s are sigmoidal

– The z’s are the hidden nodes
– The f’s are the activation functions
– The b’s are the weights
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Input layer

Output layer

Hidden layer
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x2
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R squared 92.7% Train     90.6% Test
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• Enormous flexibility
• Ability to fit anything

� Including noise

• Interpretation?
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• Multivariate Adaptive Regression 
Splines

• What do they do?
� Replace each step function in a tree model by a pair of 

linear functions. 
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R-squared  95.0% Train     94.3% Test
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• Real Life is not so kind
�Categorical variables
�Missing data
�500 variables, not 10

• 481 variables – where to start?
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• Three rules of data analysis
�Draw a picture
�Draw a picture
�Draw a picture

• Ok, but how?
�There are 90 histogram/bar charts and 

4005 scatterplots to look at (or at least 90 
if you look only at y vs. X)
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• EDM
�Use a tree to find a smaller subset of 

variables to investigate
�Explore this set graphically

�Start the modeling process over
�Build model 

�Compare model on small subset with full 
predictive model
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• 200 predictors
• 10,000 rows
• Why is this still easy?

� No missing values
� All continuous predictors



40

��
���� 
���
��
� *��������

• Tree?
|x4<0.477873

x2<0.288579

x5<0.465905 x1<0.333728

x1<0.152683 x5<0.466843

x4<0.208211

x1<0.297806

x5<0.529173 x2<0.343653

x2<0.125849 x4<0.752766

x5<0.644585 x5<0.49235

 -2.560 -0.265

 -1.890  1.150

  2.000  4.570

  5.820

  2.540  5.120

  2.910  6.050

  7.500 10.100  9.880 12.200
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• Back to reality
• Categorical predictors
• Missing data
• Almost 500 potential predictors
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• Tree model on 40 key variables as 
indentified by KXEN
� Very similar performance to KXEN model
� More coarse
� Based only on

�RFA_2
�Lastdate
�Nextdate
�Lastgift
�Cardprom



46

/����+�,�!974



47

���/�
���������3���

• Actual question is to predict profit
�Two stage model

�Predict response (yes/no)
�Then predict amount for responders

�Use amounts as weights
�Predict amount directly
�Predict yes/no directly using amount as weight

• Start these models building on what 
we learned from simple models
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• Toy problem
� Functional form of model

• PVA data
� Useful predictor – increased sales 40%

• Insurance 
� Identified top 5% of possibilities of losses

• Ingots
� Gave clues as to where to look
� Experimental design followed
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• Problem formulation
• Data preparation

� Data definitions
� Data cleaning
� Feature creation, transformations

• EDM – exploratory modeling
� Reduce dimensions

• Graphics
• Second phase modeling
• Testing, validation, implementation
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• Data preparation is most of the work
• Dealing with missing values
• What to do first?

� Use an exploratory model
• Which algorithm to use?

� All– this is the fun part, but beware of 
overfitting

� Each tells you something
• Results

� Keep goals in mind
� Test models in real situations


