
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Foundations of
Model Transformation

Model Driven Systems Development
Lecture 9-10

End-to-End Traceability

En
d

-to
-En

d
 Trace

ab
ility

Models and Transformations in Critical Systems

System Design
Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Model Transformations
• systematic foundation of
 knowledge transfer:
 theoretical resultstools
• bridge / integrate
 existing languages&tools

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases,
Monitors, Fault Trees, etc.)

Code
Generation

Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System V&V
Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Related projects
• CESAR, SAVI, …
• HIDE, DECOS, DIANA,
MOGENTES, CERTIMOT,
GENESYS, SENSORIA

Definition of Model Transformation

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Overview

Motivációs
mintapélda

1. Motivating
example

2. Modellezési
nyelvek felépítése

2. Structure of
modeling languages

3. Graph
transformation rules

4. Execution of GT
rules

5. Semantics

6. Effects of
multiple rules

1. Motivating Example

Object Relational Schema mapping

Example: Object-relational maping

 Important as:

o Model transformation
benchmark

o Most widely used industrial
model transformation
(pl. Hibernate, EJB, CDO)

 Objective:

o Input:
UML class diagram

o Output
Relational database schema

Informal definition of the MT rules of the mapping

Topmost (generalization) classes  Database table + 2 column:
•Unique identifier (primary key),
• type definition

Informal definition of the MT rules of the mapping

Class attributes  (contained by the topmost classes) Column of the table

Informal definition of the MT rules of the mapping

Type of the attributes  foreign key

Informal definition of the MT rules of the mapping

Association  A table with two columns
• source and target identifiers
• foreign keys (for consistency)

2. Structure of Modeling Languages

Revision

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Structure of Modeling languages (UML)

 Abstract syntax
o Graph based model

representation
o Machine readable

 Concrete syntax
o Visual/textual

representation
o Human readable

cref

Customer:Table Product:Table

CustId:Column

CustKind:Column

CustFavourite:Column

ProdId:Column

CustFFav:FKey

pkey

pkey

tcols tcols

fkeys fkeys

kcols

Structure of Modeling languages (RDBMS Schema)

Concrete syntax Abstract syntax

*
Class

Association

Attribute

src dst

attrs type

parent

*

UML

* Column

*
Table

FKey

fkeys

kcols

tcols

pkey
cref

*

*

DB

*

tref

Asc2Tab

Cls2Tab

Attr2Col c2a

t2c

t2a

Ref

a2t

c2t

a2c

Metamodel of the O-R mapping
 Source + Target

metamodel

 Traceability metamodel:
o For saving the relations

between the source and
the target languages

 Motivation: critical
embedded systems
o Traceability

o Requirement  Source
code

3. Graph Transformation Rules

Structure of a GT rule

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS match of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graph Transformation Rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:

• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

*
C:Class

LHS RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

Structure of a GT rule
 Graph Transformation Rules

o Left hand side - LHS
• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

C:Class

LHS

*
C:Class

parent

NAC

CP:Class

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS
Image of the RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

Structure of a GT rule

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS
Image of the RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graph Transformation Rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

4. Application of
Graph Transformation Rules

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
1. Graph pattern matching

o Match of the LHS pattern in the underlying
model

o match m: LHS  G mapping

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
NAC check
 Is there a match g for the NAC in G along the

m: LHS  G match?

 Successful match of NAC m is not a match

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
3. Non-deteministic selection

o Random selection of a match (if more
than one)

o No match rule fails

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
4. Deletion

o Deletion of LHS \ RHS from G

o In LHS yes, in RHS no

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Application of GT rules
5. Creation (and binding)

o Creation of RHS \ LHS in G with
their corresponding relations

o Output:
a „match” of RHS in G

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (DB)
tCust:Table

CustId:Column

CustKind:Column

pkey

tcols

Typical problems…

RHS

T:Table *
C:Class R:Cls2Tab

t2c c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

1) Saving the source model, traceability

2) Application of the same rule along the same match

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

The Image of
C is the same

in G!

5. Different Semantics

G (UML)

Product:Class

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

type

dst

Semantics : Handling of Dangling edges
 Dangling edges:

o Delete a node
• What to do with the

dangling edges?

 Greedy approach

o Delete all dangling edges

o Pro:
• Intuitive for engineers

• Easy to implement

o Con:
• Verification is hard

(side effect of rules)

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Customer:Class

parent

src

parent

G (UML)

Product:Class

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

type

dst

parent

src

parent

Customer:Class

Semantics : Handling of Dangling edges
 Dangling edges:

o Delete a node
• What to do with the dangling

edges?

 Conservative approach
o The rule cannot be applied if

it would produce a dangling
edge

o Pro:
• Side effect free rules

• Helps verification

o Con:
• Harder to implement

• What is its meaning for
engineers (not
mathematicans)

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Semantics: Injective matching
 Injective matching

(„kisajátító”)

o For all nodes in the LHS
separate nodes are
matched in G

 Pro:

o Intuitive for engineers

 Con:

o Verbose specification of
rules
(many alternate subrules)

Product:Class dst

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Semantics: Non-injective matching
 Non-Injective matching

(„közösködő”)
o For multiple nodes in the

LHS 
the same node can be
matched in G

 Con:
o Contradictionary

specification for a node
• For CF : keep it

• For CT : delete

 Solution:
o Nodes to be deleted in

LHS are matched with
injective semantics Product:Class

dst

type

6. Effects of Multiple GT Rules

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Conflict / Parallel independence

 Parallel independence
(between two rule applications)
o Neither prevents the application

of the other

 Conflict (between two rule
apps)
o If they are not parallel

independent

 Parallel independence
(between two rules)
o Any two of their rule application

are parallel independent
Product:Class dst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G1 (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Sequential independence

 Sequential independence
(two following rule
applications)
o Their order can be swapped

without any effect on their
final result

Product:Class dst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G2 (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Sequential independence

 Sequential independence
(two following rule
applications)
o Their order can be swapped

without any effect on their
final result

 Example Product:Class dst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G1 (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Causal dependence I.

 Sequential independence
(two following rule applications)

o Their order can be swapped
without any effect on their final
result

 Causally dependent
(two following rule applications)

o If they are not serial
independent

Product:Class dst

type

A:Attrib

attrs

RHS

CT:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G2 (UML)

NormalCustomer:Class

favourite:Attribute

orders:Association

VIPCustomer:Class

attrs

parent

src

parent

Customer:Class

Causally dependence II.

 Serial independence
(two following rule applications)
o Their order can be swapped

without any effect on their final
result

 Causally dependent
(two following rule applications)
o If they are not serial

independent

 Example
Product:Class dst

type

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Attrib

attrs

RHS

CT:Class

Summary
 Graphtransformation,

as a modeltransformation paradigm
o Rule and pattern based formal specification
o Querying and manipulating graph based models
o Intuitive graph based specification

 Structure

o LHS graph pattern: precondition
o RHS graph pattern: postcondition
o NAC: negative

 condition

 Rule application

o Graph pattern matching
o Deletition + Creation
o Dangling edges and injectivity
o Affect of multiple rule application (conflicts and causality)

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

Chaining and Traceability of
Model Transformations

Code Generation by Model Transformations

Source Model Target Code Code DOM/AST

M2M M2T

Model-to-Model (M2M)
Transformation
• SRC: In-memory model (objects)
• TRG: In-memory model (objects)

Model-to-Text (M2T)
Transformation
• SRC: In-memory model (objects)
• TRG: Textual code (string)

Traceability in Model Transformations

Source Model Target Code Code DOM/AST

M2M M2T

Objective:
• Support end-to-end traceability
• REQ  Model  Code

Traceability links:
• Additional links (edges)
• Connect SRC and TRG models

Chaining of Model Transformations

Source Model Target Code Code DOM/AST

M2M M2T

Inter Model 1 Inter Model 2

M2M

M2M

M2M

Goal:
• Reduce abstraction gap

by „divide and conquer”
• Intermediate models
• Chain of

model transformations

Model Transformation Flows / Chains

Source Model Target Code Code DOM/AST

M2T

Inter Model 1 Inter Model 1

M2M

M2M

M2M

Source Model 2

M2M

Joint optimization steps

Incrementality in
model transformations

Incremental Forward Transformation

MSRC
MTRG TRACE

M’SRC M’TRG
TRACE’

1. First transformation

2. Source model changes

3. Apply changes to
 target model

Practical application scenarios:
• Incremental model synchronization
• Tool integration

Solutions:
• Bidirectional transformations
• Change-driven transformations

Incremental Backward Transformation

MSRC
MTRG TRACE

M’SRC TRACE’ M’TRG

1. First transformation

2. Target model changes

3. Apply changes to
 source model

Challenge:
SRCTRG specified
TRGSRC inferred

Recent Approaches:
A. Schürr, P. Stevens, N. Foster, T. Hettel,
Cicchetti&Pierantonio, Czarnecki&Diskin

Change Driven Model Transformations

Change
ModelTRG

Change Driven Model Transformations

MSRC
MTRG TRACE

M’SRC M’TRG
TRACE’

Change Driven Transformation
• Input: consumes change model
• Output: produces change model

Apply Target Change Model
• via an API with little trace info
• target model is not materialized!

Change
ModelSRC

Levels of Incrementality in
Model Transformations

No Incrementality: Batch Transformations

1. First transformation

2. Source model changes

3. Re-execute from scratch
for all source models

SRC1

SRC2

TRG1 TRACE1

TRG2 TRACE2

Dirty Incrementality

1. First transformation

2. Source model changes

3. Re-execute from scratch
only for changed models

SRC1

SRC2

TRG1 TRACE1

TRG2 TRACE2

Pros:
• Large-step incrementality
• Avoids continuous exec.
Cons:
• Complex MT can be slow
• Cleanup (after an error)?
• Chaining?

Incrementality by Traceability

1. First transformation

2. Source model changes

4. Re-execute MT only for
untraceable elements

SRC1

SRC2

TRG1 TRACE1

TRG2 TRACE2

3. Detect missing trace links

Pros:
• Small-step incrementality
• Better performance
Cons:
• Highly depends on

traceability links
• Smart matcher needed

Event Driven Transformations

1. First transformation

2. Source model changes

4. Fire rule activations
(in relevant context)

SRC1

SRC2

TRG1 TRACE1

TRG2 TRACE2

3. Detect new activations

Pros:
• Refined context: driven by

changes of query result set
• Chaining
• Avoids continuous comp.
Cons:
• Language-level restrictions

Design Space Exploration

Á. Hegedüs, Á. Horváth, D. Varró:
A model-driven framework for guided design space exploration.
Automated Software Engineering (August 2014)

DOI: 10.1007/s10515-014-0163-1

Model-Driven Guided Design Space Exploration

End-to-End Traceability

En
d

-to
-En

d
 Trace

ab
ility

System
Design Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Design + V&V Artifacts
(Source code, Glue code,

Config. Tables, Test Cases, Monitors,
Fault Trees, etc.)

Code & Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System
V&V Model

Model generation

Back-Annotation
Model generation

Back-Annotation
Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Model-driven guided
design space exploration
• Quick fixes for DSMLs
• Design of ARINC653 configs

Design Space Exploration

56

Design Space Exploration

Design
Alternative 1

Design
Alternative 2

Design
Alternative 3

Design
Alternative 4

Goals

Global
Constraints

Operations

Initial Design

Special state space exploration
• potentially infinite state space
• „dense” solution space

Model Driven Guided Design Space Exploration

57

Design Space Exploration

Seq of Transf.
Rules 1

Seq of Transf.
Rules 2

Seq of Transf.
Rules 3

Seq of Transf.
Rules 4

Model queries
as Goals

Model queries
as Constraints

Transf. Rules
as Operations

Initial
Model

Guidance for exploration: Hints
• designer / end user
• formal analysis

Modified model

Operation

Initial model

Solution model

Constraints
violated

Goals
satisfied

Guided Design Space Exploration

 High-level overview

58

Initial model

Modified model

Operation

Solution
 model

Cut-off criteria
satisfied

Selection
criteria used

Design Space Exploration for IMA Config. Design

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality

3

System

Display

AirCond

Panel

3

1

2

3

7

4

5

6

8

Communication
channels

Temperature

Pressure

Humidity

Design Space Exploration

Design
Alternative 1

Design
Alternative 2

Design
Alternative 3

Design
Alternative 4

Goals

Global
Constraints

Operations

Initial Design

Supply fresh air

Supply hot air

Monitor
temperature

Set
temperature

Designing ARINC653 configurations

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality
(critical + non-critical)

3

System

Display

AirCond

Panel

3

Redundancy
requirement

Job instances, Partitions, Modules

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality
(critical + non-critical)

3

System

Display

AirCond

Panel

3

1

2 3

7

Job instances

4

5 6

8

Partitions

Modules

Constraints

2

5

3

4

8

8

8

8

Memory needs
+ constraints

Do not mix critical
and non-crit. jobs

Do not mix
instances of the
same critical job

Additional constraints
• WCET,
• scheduling, etc.
• interfaces
• datatypes

Allocating communication channels

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality

3

System

Display

AirCond

Panel

3

1

2

3

7

4

5

6

8

Communication
channels

Temperature

Pressure

Humidity

Model Driven Development of IMA Configs

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Inputs:
• Platform Independent Model (PIM)
 (functional + nonfunc. reqs; Simulink)
• Platform Description Model (PDM)
 for ARINC 653 (DSML)

Output:
• Integrated system model
• Ready for simulation
• End-to-end traceability

Model Driven Development of IMA Configs

Capture
constraints

Explore
alternatives

Human
decision

Automate
consequences

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Model transformation chains:
• Designer-guided manual steps
• Automated steps

• design space exploration
• optimization
• code generators

• Continuous validation of design rules

VIATRA: A Reactive Incremental
Transformation Platform

Reactive Event Driven Transformations

VIATRA:
Reactive

Transformation
Engine

Observed
events

Controlled
events

Actions

What has changed?

When to react?
Perform in

consistent state

Reactive Event Driven Transformations

VIATRA:
Reactive

Transformation
Engine

Observed
events

Controlled
events

Actions

• Model modified
• Match appeared
• Event sequence identified

• „Run” button pushed
• Consistent state reached after

editing
• Transaction committed

• Modify model
• Add error marker
• Update view
• Send e-mail

Reactive Event Driven Transformations

VIATRA:
Reactive

Transformation
Engine

Observed
events

Controlled
events

Actions

• Event source
• Event occurence

(type, data)
• Life cycle

• Jobs

• Scheduler

Rule specifications

• Agenda
• Conflict Resolver
• Executor

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

 action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

 lifecycle(ActivationLifecycles.incremental).

 action(::Appeared)[

 match | // perform action].

 action(::Disappeared)[

 match | // perform action].

 build

Event data

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

 action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

 lifecycle(ActivationLifecycles.incremental).

 action(::Appeared)[

 match | // perform action].

 action(::Disappeared)[

 match | // perform action].

 build

Rule specification

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

 action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

 lifecycle(ActivationLifecycles.incremental).

 action(::Appeared)[

 match | // perform action].

 action(::Disappeared)[

 match | // perform action].

 build

Observed events

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

 action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

 lifecycle(ActivationLifecycles.incremental).

 action(::Appeared)[

 match | // perform action].

 action(::Disappeared)[

 match | // perform action].

 build

Job specification

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

 action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

 lifecycle(ActivationLifecycles.incremental).

 action(::Appeared)[

 match | // perform action].

 action(::Disappeared)[

 match | // perform action].

 build

Activation
state-event
transitions

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

 action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

 lifecycle(ActivationLifecycles.incremental).

 action(::Appeared)[

 match | // perform action].

 action(::Disappeared)[

 match | // perform action].

 build

Jobs associated
with event types

Activation Lifecycles

 Batch transformation

 Event-driven transformation

Appeared

Updated

/updateJob

/appearJob Appeared

Disappeared

Fired

/disappearJob

Phases

Disabled

Appear
Update

Fire
Disappear

Initial

Enabled

Transitions

Only feature of
event data object

has changed

Scheduling

Reactive
Transformation

Pfatform
Scheduler

EMF Transactions

EMF-IncQuery
Base Index

EMF-IncQuery
Engine

User interface

Workflow

…

„Consistent state
reached, execute
activations now”

Conflict Resolution

 Multiple actions available

o Different activations in the same rule

o Activations of different rules

 Which activation to execute next?

 Conflict resolver can be selected

o Global conflict set: deals with all rules

o Scoped conflict set: selected rules

VIATRA: Overview of Features

•Explore design model
candidates

•Satisfying multiple criteria

•Rule based exploration

•Optimization

Design
Space

Exploration

•Detect complex event
sequences

•Rule based reaction

•Xtext based language

Complex
Event

Processing

•Remove sensitive information
from confidential models

•Original model 
Obfuscated model

Model
Obfuscator

 Reactive MT Platform

o MT Language:
• Internal DSL over Xtend

• Transformation API

o MT Engine:
• Event-driven virtual machine

• Batch + Incremental MTs

• Control flow library

• Compiles to Java

• Debugger

• High performance

o Integrations:
• EMF, IncQuery, Xtend,

EMF-UML, …

Cross-technology benchmark
for model validation

The Train Benchmark Case for Incremental Model Validation
(Transformation Tool Contest 2015)

The Train Benchmark
 Model validation workload:

o User edits the model
o Instant validation of

well-formedness constraints
o Model is repaired accordingly

 Scenario:
o Load + Check
o Edit + Re-Check

 Models:
o Randomly generated
o Close to real world instances

• Following different metrics
• Customized distributions

o Low number of violations

 Queries:
o Two simple queries

(<2 objects, attributes)
o Two medium queries

(4-7 joins, negation)
o Two complex queries

(7+ joins, transitive closure)
o Validated match sets

 Transformations:
o Modifies the model
o Repair: remove existing violations
o Inject: create new violations (matches)

Incremental validation Batch validation

Instance
model

Read Check Edit ReCheck  ! 

100x

What Tools are Compared?

Selected Queries
RouteSensor

SemaphoreNeighbor

http://trainbenchmark.inf.mit.bme.hu for more details

http://trainbenchmark.inf.mit.bme.hu/
http://trainbenchmark.inf.mit.bme.hu/

Batch validation runtime

Nodes /
 Edges /
Results

EMF-IncQuery:
Batch execution is dominated by
• loading the model
• initializing the indexers

Re-validation time (complex queries)

Characteristic
difference

(note the log scale)

EMF-IncQuery:
• close to zero response time
• increases with result set size

Memory usage

• Incremental engines:
linear memory overhead

• BUT: Most standard JVMs start
having severe performance
issues with large models

See also a MT benchmark: https://github.com/viatra/incquery-examples-cps /

Performance benchmarks

https://github.com/viatra/incquery-examples-cps

CPS Reallocation Benchmark
 Benchmark setup

o Rule-based redeployment
for cloud-based CPS
• Model generator + Unit tests

• M2M + M2T transformations

 Different target
architecture / platform

o Industrial (Low-Synch)

o Client-Server

o Publish-Subscribe

Test Scenario
 Different transformation variants

o Batch
• Xtend (2 versions)
• IncQuery+Xtend

o Incremental
• Dirty (2 approaches)
• Explicit traceability
• Query-driven
• Change-driven (VIATRA-EVM)

 Executions
o First transformation execution
o Small modification + (re)execution

 Environment
o New machine with 16 GB RAM

 Parameters
o 10 GB Heap
o Maximum 10 minutes execution

times for complete chain

Scale SRC Objects SRC References TRG Objects TRG References Trace Objects Trace References

SUM
Objects

SUM
References

1 395 772 366 736 354 720 1 115 2 228

2 849 1 821 773 1 535 762 1 535 2 384 4 891

4 1 694 4 697 1 534 2 972 1 522 3 056 4 750 10 725

8 3 604 17 111 3 266 6 108 3 254 6 520 10 124 29 739

16 7 820 89 193 7 124 12 395 7 112 14 236 22 056 115 824

32 17 714 594 181 16 308 24 837 16 297 32 605 50 319 651 623

64 43 795 4 424 529 40 960 50 028 40 948 81 908 125 703 4 556 465

Trace model’s size
similar to target model

Back-annotation of
Verification Results

Based on Ábel Hegedüs’ PhD thesis

Overview: Back-Annotation of Execution Traces

Back-annotation of
execution traces

End-to-End Traceability

En
d

-to
-En

d
 Trace

ab
ility

System
Design Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Design + V&V Artifacts
(Source code, Glue code,

Config. Tables, Test Cases, Monitors,
Fault Trees, etc.)

Code & Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System
V&V Model

Model generation

Back-Annotation
Model generation

Back-Annotation
Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Model Analysis: Motivation for BPEL

Requirement:
Every received request
must result in a reply!

Will the business
process assure this?

Receive request

Calculate Rating

Send offer

Accept?

Receive answer

Send reply

Send rejection

Receive
update request

Update?

Rollback changes

Throw Error

Event: Cancel

Yes No

Yes No

Motivating scenario (cont.)

Requirement:
Every received request
must result in a reply!

Receive request

Calculate Rating

Send offer

Accept?

Receive answer

Send reply

Send rejection

Receive
update request

Update?

Rollback changes

Throw Error

Event: Cancel

Yes No

Yes No

Motivating scenario (cont.)

Requirement:
Every received request
must result in a reply!

Receive request

Calculate Rating

Send offer

Accept?

Receive answer

Send reply

Send rejection

Receive
update request

Update?

Rollback changes

Throw Error

Event: Cancel

Yes No

Yes No

Returns with a web-
service error

Not executed =
 No reply

High-level

System Model

Model Based Analysis
System design

Mathematical

model

Model

generation

Mathematical analysis

List of

inconsistencies Analysis
(e.g model checker)

Fix problem Receive request

Calculate Rating

Send offer

Accept?

Receive answer

Send reply

Send rejection

Receive
update request

Update?
YesNo

Yes No

Counter-example / Execution traces



Back-Annotation of Counter Example Traces

High-level

System Model Mathematical

model

Model

generation

Back-annotation

of target trace
Analysis

(e.g model checker)

Replay of

source trace

Receive request

Calculate Rating

Send offer

Accept?

Receive answer

Send reply

Send rejection

Receive
update request

Update?
YesNo

Yes No

Overview of Back-annotation

99

Challenges of Back-annotation

sf

si

sj

si

sj

sk

Multiple domain transitionsMultiple formal transitions

si

sd1
sf1

sf2

No formaltransition

Independent transitions

sf3

sd2

Domain seq. Formalseq. Domain seq. Formalseq. Domain seq. Formalseq.

Domain seq. Formalseq.

sd1
sf1

sf2

Spurious formalsequence

sf3

Domain seq. Formalseq.

sf
si sj

Alternative domain transitions

Domain seq. Formalseq.

(1) (2) (3)

(4) (5) (6)

Example: Back-Annotation

101

pt: PN Seq.

ps1: PN step ps2: PN step

Select
Transition

Fire
Transition

Select
Transition

Fire
Transition

next

d: Delete
Token

c: Create
Token

bt: BPEL Seq.

bs1: BPEL
step

bs2: BPEL step

Activity
Startable

Activity
Runs

Activity
Executed

substep

c1: Change
State

c2: Change
State

Fire Transition

Select Transition

Fire Transition

Select Transition

Add Tokens

Delete Tokens

BPEL Activity
Executed

BPEL Activity Runs

BPEL Activity
Startable

Example: Back-annotation

102

SD

sd1

sd2

sd3

sd4

sf1

sf2

sf3

sf4

calcRating

calcSecurity

flow

Fire Tr.

Fire Tr.

Fire Tr.

Start Flow

Invoke WS

Invoke WS

MF

MF

Throw Flt.

B2PN

B2PN

B2PN

B2PN

AD

Now processing

Processed

Legend

Simulation rule

Activation

Rule mapping

Correspondence
link

Domain trace Formal trace

Fire Tr.

tor

tis

tir

tfs

Our Back-Annotation Approach

Trace
concretization

Formal
trace

Domain
trace

Trace
construction

Sequence
reconstruction

Formal
sequence

Domain
sequence

Back-annotation

1

2

3 Analyze independent
transitions

Design Space
Exploration

Galois connection

Domain trace Formal trace

Semantic Properties of Back-Annotation
 Correctness  Minimality

104

