Biofizika gyakorlat Röntgen-cső, emissziós spektrumok + gamma abszorpció jegyzőkönyv:

A gyakorlat célja

A gyakorlat célja a röntgen sugárzás és annak az anyagokkal való kölcsönhatásának jobb megértése, az egészségügyi felhasználás szemszögből.

Gyakorlaton elvégzett feladatok

Egy rövid elméleti áttekintés után a gyakorlat folyamán kettő alapvető mérést végeztünk el. Az első mérésben a molibdénanódos röntgencső fékezési és karakterisztikus sugárzásának spektrumát vesszük föl különböző gyorsítófeszültségek és áramerősségek mellett. A második mérés során különböző áramerősségek mellett vizsgáltuk a teljesítmény viszonyokat. A harmadik mérésben pedig a különböző anyagok gyengítési együtthatóit vizsgáltuk.

Használt anyagok és eszközök, fontos körülmények

A mérés során használtunk az LD DIDACT által gyártott X-ray apparatus-t, valamint az ehhez tervezett azonos nevű szoftvert. Valamint egy sor különböző fémet tartalmazó mintát, amelyeknek a gyengítési együtthatóit vizsgáltuk.

Rövid elméleti összefoglalás

Először a röntgen gép elrendezését nézzük meg a lenti ábrán.

Látszik, hogy az eszköz két nagyobb részre osztható. Az elsőben található a röntgen cső.

Anód anyaga: W , Mo – magas olvadáspont

A röntgencső a legegyszerűbb kivitelben egy katódból és egy anódból áll, ezek egy üvegburában vannak légmentesen lezárva. Ebben a burában vákuum van, mivel nem szeretnénk, ha az elektronok a levegőben található molekulákkal lépnének érintkezésbe. Nagyteljesítményű röntgencsövek esetében, amelyeket a komputertomográfiában vagy angiográfiában (érdiagnosztika) használnak, a búra fémből készül, ami azzal az előnnyel jár, hogy sokkal nagyobb hőteljesítmény vezethető el.

A katódból termikus emisszióval kilépő, gyorsítófeszültségre kapcsolt - a fénysebesség 30-65%-ára felgyorsított - elektronok fókuszálás után becsapódnak az anódba, ahol lelassulnak. A lassulás során az elektronok energiájának kevesebb mint 1%-a röntgensugárzássá, 99%-a hővé alakul.

A fékezési sugárzás (idegen szóval Bremsstrahlung, a német bremsen (fékezni) és Strahlung (sugárzás) szavakból) olyan elektromágneses sugárzás, amely töltéssel rendelkező részecske lassulása által keletkezik, amikor azt más töltött részecske (jellemzően elektron vagy atommag) letéríti eredeti pályájáról.

A röntgencső izzókatódjából kilépő, *e* töltéssel rendelkező elektronok a katód és az anód közé kapcsolt *U* gyorsítófeszültség hatására eU mozgási energiára tesznek szert, majd az anód anyagában lefékeződnek. Lefékeződésük során energiájuk egy kis részét röntgenfotonok formájában kisugározzák, a többi hővé alakul. A keletkezett röntgensugárzás spektruma rövidhullámú határral végződőfolytonos spektrum. E rövidhullámú határhullámhossz (λ_h) a veszteségmentes energiaátalakuláshoz tartozik, amikor az elektron teljes eU energiájából egy *hf*_h energiájú röntgenfoton keletkezik:

$$eU = hf_h = h\frac{c}{\lambda_h}$$

Az állandók összevonása után:

$$\lambda_h = \frac{k}{U}$$

ahol $k = h \cdot c/e \approx 1230 \text{ pm} \cdot \text{kV}$. Ez az ún. Duane–Hunt-törvény. Növekvő gyorsító-feszültség hatására tehát a fékezési röntgensugárzás spektruma a rövidebb hullámhosszok, azaz a nagyobb fotonenergiák felé tolódik, a szakzsargon kifejezése szerint a sugárzás "keményedik". Csökkenő gyorsítófeszültség hatására a spektrum jobbra tolódik, "lágyul".

Ha változatlan gyorsítófeszültség mellett a katód izzószálának fűtését és ezzel a kilépő elektronáramot növeljük, az egyes elektronok energiája nem változik, a spektrum nem tolódik el, de az anódba csapódó elektronok nagyobb száma miatt a röntgensugárzás intenzitása minden hullámhosszon arányosan nő.

A fékezési spektrum görbéje alatti terület a cső által a teljes hullámhossz-tartományban kibocsátott összteljesítménnyel egyenlő. Ez az összteljesítmény:

 $P_{\rm Rtg} = c_{\rm Rtg} U^2 {\rm IZ}$

ahol *U* a katód és az anód közé kapcsolt gyorsítófeszültség, *I* az anódáram áramerőssége, *Z* az anód anyagának rendszáma és c_{Rtg} egy arányossági _{ténvező}, melynek értéke $1, 1 \cdot 10^{-9}V^{-1}$.

A röntgenkép kialakulásának alapja az, hogy a test egyes szöveteinek abszorbeáló képessége, pontosabban a szövetek μ gyengítési együtthatói különböznek egymástól. Ennek oka részben a szövetek eltérő sűrűsége, részben pedig — még azonos sűrűség mellett is — a különböző elemösszetétel. A gyengítési együttható ugyanis arányos az abszorbeáló anyag sűrűségével (ρ):

 $\mu = \mu_m \cdot \rho$

ahol μ_m a tömeggyengítési együttható. Tehát egy röntgenkép kontrasztossága egyrészt az átvilágított anyagok sűrűségkülönbségeitől függ. Másrészt a μ_m tömeggyengítési együttható értéke is különbözhet a _{különböző} anyagokra. A μ_m az _{elnyelő} anyag atomjainak Z rendszámától függ, aszerint, hogy milyen típusú abszorpciós folyamat játszik szerepet az elnyelésben. A röntgendiagnosztikában két abszorpciós folyamat számottevő, a fotoeffektus és a Compton-szórás, így a tömeggyengítési együttható is két tagból áll:

 $\mu_m = \tau_m + \sigma_m$

Míg a Compton-szórás tömeggyengítési együtthatója (σ_m) gyakorlatilag nem függ a rendszámtól, a fotoeffektus tömeggyengítési együtthatója (τ_m) annál erősebben, a rendszám köbével arányos:

$\tau_m = C \lambda^3 Z^3$

vagyis a fotoeffektus tömeggyengítési együtthatója a sugárzás hullámhosszának és az abszorbens rendszámának harmadik hatványával arányos (C egy arányossági együttható).

Az a tény, hogy $\tau_m \operatorname{erősen}$ függ az abszorbens rendszámától, hozzájárul ahhoz, hogy viszonylag kis rendszámbeli eltérések esetén is kontrasztos képet kapjunk.

Ugyancsak a fenti összefüggés az oka annak, hogy a nagy rendszámú elemek (pl. ólom) jó abszorbensek, így sugárárnyékolásra kiválóan alkalmasak.

A fenti összefüggés az alapja a röntgennyaláb útjába helyezett szűrők alkalmazásának is, valamint annak, hogy a kisebb rendszámú elemek (lágy szövetek) közötti különbségek kimutatására nagyobb hullámhosszúságú (ún. lágy) röntgensugárzást használunk. A lágy szövetek diagnosztikájában lágy, és lehetőleg homogén (keskeny spektrumszélességű) sugárzás kívánatos; mammográfiában pl. 25 – 50 kV gyorsító feszültséget és molibdénanódos röntgencsövet alkalmaznak, amelynek karakterisztikus sugárzása eleget tesz e feltételeknek.

Első mérés

Az első mérésben a molibdénanódos röntgencső fékezési és karakterisztikus sugárzásának spektrumát vesszük föl különböző gyorsítófeszültségek és áramerősségek mellett. A mérés célja a spektrumok bemutatása, valamint annak demonstrálása, hogy miként függenek ezek a spektrumok a röntgencső fenti paramétereitől. A spektrumokból ellenőrizhetjük a Duane–Hunt-törvényt, meghatározhatjuk a benne szereplők konstans értékét. A spektrumok integrálásával (görbe alatti terület) megkaphatjuk a fékezési röntgensugárzás összteljesítményét is.

Spektrum felvétele állandó I = 1 mA áramerősség mellett U = 20, 23, 26, 30 és 35 kV gyorsítófeszültséggel.

A mérés során az alábbi görbesereget kapjuk.

A görbék elejére illesztettem egyenest, a mért értékek.

mertekegyseg = symunit; U = [35 30 26 23 20] * 1000; lambda = [34.5 40.4 46.8 52.8 60.9]*1E-12;

Illesztünk egy görbét a mért adatokra.

```
[illesztes_1, gof_1] = fit(1./U', lambda', 'poly1');
disp(illesztes_1)
```

```
Linear model Poly1:

illesztes_1(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 1.23e-06 (1.216e-06, 1.244e-06)

p2 = -6.113e-13 (-1.163e-12, -5.941e-14)
```

disp(gof_1)

```
sse: 1.6310e-26
rsquare: 1.0000
    dfe: 3
adjrsquare: 0.9999
    rmse: 7.3735e-14
```

disp(illesztes_1.p1 * mertekegyseg.m * mertekegyseg.V)

```
\frac{5809182493752179}{4722366482869645213696} \ V \ m
```

```
disp(double(separateUnits(unitConvert(illesztes_1.p1 * ...
    mertekegyseg.m * mertekegyseg.V, mertekegyseg.pm * ...
    mertekegyseg.kV))))% pm * kV
```

1.2301e+03

Az illesztés kis hibával hozta az elvárt eredményt és a k szám is rendkívül pontos.

```
figure
plot(illesztes_1, 1./U, lambda)
title('Gyorsítófeszültségek melett mért lambda értékek')
xlabel('Gyorsító feszültségek reciproka[1/V]')
ylabel('lambda[m]')
```


Az ábrán jól látszik a Duane–Hunt-törvény által feltételezett linearitás, az egyenes meredeksége pedig az X-ray Apparatus programból kiolvasva 1230 pm*kV, ami meg is felel a Duane–Hunt-törvénybeli értéknek.

Spektrum felvétele állandó U = 35 kV gyorsítófeszültség mellett I = 0,7 mA áramerősséggel.

Az alábbi görbesereget kaptuk a mérés során.


```
I_A = [1; 0.8; 0.6; 0.4; 0.2] * 1E-3;
P_karakterisztikus = [8941.1; 7586.3; 6125.1; 4186.4; 2284.3];
P_teljes = [33418.0; 27713.3; 21242.5; 14737; 7621.2];
P_I_table = table(I_A,P_teljes,P_karakterisztikus);
P_I_table.P_fekezesi = P_I_table.P_teljes - P_I_table.P_karakterisztikus;
disp(P_I_table)
```

I_A	P_teljes	P_karakterisztikus	P_fekezesi		
0.001	33418	8941.1	24477		
0.0008	27713	7586.3	20127		
0.0006	21243	6125.1	15117		
0.0004	14737	4186.4	10551		
0.0002	7621.2	2284.3	5336.9		

Illesztünk egy görbét a mért adatokra.

```
f_model_2 = fittype('1.1E-9 * (35E3)^2 * I * Z', ...
    'dependent',{'P'},'independent',{'I'},'coefficients',{'Z'});
[illesztes_2, gof_2] = fit(P_I_table.I_A, P_I_table.P_fekezesi, f_model_2);
```

Warning: Start point not provided, choosing random start point.

```
disp(illesztes_2)
```

```
General model:
illesztes_2(I) = 1.1E-9 * (35E3)^2 * I * Z
Coefficients (with 95% confidence bounds):
  Z = 1.853e+07 (1.794e+07, 1.912e+07)
```

disp(gof_2)

```
sse: 7.1838e+05
rsquare: 0.9969
dfe: 4
adjrsquare: 0.9969
rmse: 423.7859
```

A kapott rendszám:

disp(illesztes_2.Z * 1E-6)

18.5315

Végül ábrázoljuk:

```
figure
plot(illesztes_2, P_I_table.I_A, P_I_table.P_fekezesi)
set(gca, 'XScale', 'log', 'YScale', 'log')
title('Áram fékezési teljesitmény értékek')
legend("Location", "best")
xlabel('Location", "best")
ylabel('Teljesítmény értékek[W]')
grid on
```


Látszik, hogy a teljesítmény és az áramok értékek arányosak egymással.

Második mérés

A második mérés a röntgensugárzás abszorpciójára vonatkozik, a mérés célja a $\tau_m = C\lambda^3 Z^3$ összefüggés ellenőrzése ($C = 5.5 - 6.5 \text{ cm}^2/g \cdot \text{nm}^3$). Adott kristályállásnál, tehát adott röntgenhullámhossznál különböző rendszámú abszorbens fóliákat helyezünk a röntgennyaláb útjába. Az eredeti röntgenintenzitás (J_0), valamint

a legyengített intenzitások (J) mért értékeiből és az abszorbens fólia vastagságából (x) megállapítjuk az egyes anyagok gyengítési együtthatóit:

$$\mu = \frac{1}{x} \ln\left(\frac{J_0}{J}\right)$$

abból pedig a sűrűség (ρ) ismeretében a $\mu = \mu_m \cdot \rho$ összefüggés szerint a tömeggyengítési együtthatót:

$$\mu_m = \frac{\mu}{\rho}$$

A Compton-szórás tömeggyengítési együtthatója a különböző abszorbensekre közelítőleg ugyanaz, az

alkalmazott hullámhosszon értéke $0, 2\frac{\text{cm}^2}{g}$. Ezt az $\mu_m = \tau_m + \sigma_m$ összefüggés értelmében μ_m értékéből kapjuk a fotoeffektus tömeg-gyengítési együtthatóját:

$$\tau_m = \mu_m - 0, 2\frac{\mathrm{cm}^2}{g}$$

A különböző abszorbensekre így kapott τ_m értékeket az abszorbens rendszámának függvényében ábrázoljuk.

```
absorbens = ['Al'; 'Fe'; 'Cu'; 'Zr'; 'Z2'; 'Mo';'Ag'];
absorbens = cellstr(absorbens);
Z = [13; 26; 29; 40; 40; 42; 47];
kettes_meres = table(Z, 'RowNames', absorbens);
kettes_meres.lgZ = log10(kettes_meres.Z);
kettes_meres.ro = [2.7;7.86;8.92;6.49; 6.49; 10.28;10.5];
kettes_meres.x = [0.05;0.05;0.007;0.005;0.01;0.01;0.005];
J0 = 542 % 21.4
```

JØ = 542

```
kettes_meres.J = [26.4;2.76;20.96;35.39;16.31;9.9;19.91];
kettes_meres.mu = (1./kettes_meres.x) .* log(J0 ./kettes_meres.J);
kettes_meres.mu_m = kettes_meres.mu ./ kettes_meres.ro;
kettes_meres.tau_m = kettes_meres.mu_m - 0.2;
kettes_meres.lgtau_m = log10(kettes_meres.tau_m);
disp(kettes_meres)
```

	Z	lgZ	ro	х	J	mu	mu_m	tau_m	lgtau_m
Al	13	1.1139	2.7	0.05	26.4	60.438	22.384	22.184	1.346
Fe	26	1.415	7.86	0.05	2.76	105.6	13.435	13.235	1.1217
Cu	29	1.4624	8.92	0.007	20.96	464.66	52.092	51.892	1.7151
Zr	40	1.6021	6.49	0.005	35.39	545.77	84.094	83.894	1.9237
Z2	40	1.6021	6.49	0.01	16.31	350.35	53.983	53.783	1.7306
Мо	42	1.6232	10.28	0.01	9.9	400.27	38.937	38.737	1.5881
Ag	47	1.6721	10.5	0.005	19.91	660.81	62.934	62.734	1.7975

Nézzük meg az eredményeket egy ábrán.

```
f_model_3 = fittype('5.5 * lambda^3 * Z^3', ...
    'dependent',{'Tau_m'},'independent',{'Z'},'coefficients',{'lambda'});
```

Warning: Start point not provided, choosing random start point.

disp(illesztes_3)

```
General model:
illesztes_3(Z) = 5.5 * lambda^3 * Z^3
Coefficients (with 95% confidence bounds):
  lambda = 0.05211 (0.04399, 0.06023)
```

disp(gof_3)

```
sse: 3.3646e+03
rsquare: 0.0392
dfe: 6
adjrsquare: 0.0392
rmse: 23.6806
```

A lambda becsült értéke:

disp(illesztes_3.lambda)% nm-ben

0.0521

Grafikon:

```
figure
plot(illesztes_3, kettes_meres.Z, kettes_meres.tau_m)
set(gca, 'XScale', 'log', 'YScale', 'log')
title('A fotoeffektus tömeggyengítési együtthatója a rendszám fügvényében')
legend("Location", "best")
xlabel('A rendszám')
ylabel('Tömeggyengítési együttható [cm^2/g]')
grid on
```


Mint az az ábrán jól látszik a mérés nem hozta a várt eredményt, az adatok csak nagyon nagy szórással tartanak egy egyeneshez. Valószínűleg a legjobb megoldás a mérés ismételt elvégzése lenne, elötte a műszerek alapos ellenőrzését is érdemes lenne elvégezni.

Egy korábbi mérés számai alapján

```
absorbens = ['Al'; 'Fe'; 'Cu'; 'Zr'; 'Mo';'Ag'];
absorbens = cellstr(absorbens);
Z = [13; 26; 29; 40; 42; 47];
kettes_meres = table(Z, 'RowNames', absorbens);
kettes_meres.lgZ = log10(kettes_meres.Z);
kettes_meres.ro = [2.7; 7.86; 8.92; 6.49; 10.28; 10.5];
kettes_meres.x = [0.05; 0.05; 0.007; 0.005; 0.01; 0.005];
J0 = 146
```

```
JØ = 146
```

```
kettes_meres.J = [122; 8.87; 72.5; 66.83; 13.03; 30.3];
kettes_meres.mu = (1./kettes_meres.x) .* log(J0 ./kettes_meres.J);
kettes_meres.mu_m = kettes_meres.mu ./ kettes_meres.ro;
kettes_meres.tau_m = kettes_meres.mu_m - 0.2;
kettes_meres.lgtau_m = log10(kettes_meres.tau_m);
disp(kettes_meres)
```

	Z	lgZ	ro	х	J	mu	mu_m	tau_m	lgtau_m
Al	13	1.1139	2.7	0.05	122	3.5917	1.3303	1.1303	0.05318

Fe	26	1.415	7.86	0.05	8.87	56.019	7.1271	6.9271	0.84055
Cu	29	1.4624	8.92	0.007	72.5	100	11.211	11.011	1.0418
Zr	40	1.6021	6.49	0.005	66.83	156.29	24.082	23.882	1.3781
Мо	42	1.6232	10.28	0.01	13.03	241.64	23.505	23.305	1.3675
Ag	47	1.6721	10.5	0.005	30.3	314.49	29.952	29.752	1.4735

Nézzük meg az eredményeket egy ábrán.

Warning: Start point not provided, choosing random start point.

disp(illesztes_3)

```
General model:
illesztes_3(Z) = 5.5 * lambda^3 * Z^3
Coefficients (with 95% confidence bounds):
  lambda = 0.03861 (0.0367, 0.04053)
```

disp(gof_3)

```
sse: 35.7157
rsquare: 0.9436
dfe: 5
adjrsquare: 0.9436
rmse: 2.6727
```

A lambda becsült értéke:

```
disp(illesztes_3.lambda)% nm-ben
```

0.0386

Grafikon:

```
figure
plot(illesztes_3, kettes_meres.Z, kettes_meres.tau_m)
set(gca, 'XScale', 'log', 'YScale', 'log')
title('A fotoeffektus tömeggyengítési együtthatója a rendszám fügvényében')
legend("Location", "best")
xlabel('A rendszám')
ylabel('Tömeggyengítési együttható [cm^2/g]')
grid on
```

