Valószínűségszámítás

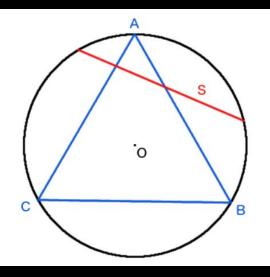
2020. október 14. Mészáros Szabolcs Tárgyhonlap: cs.bme.hu/valszam A prezentáció anyagát és az abból készült videofelvételt a tárgy hallgatói jogosultak használni, kizárólag saját célra. A felvétel másolása, videómegosztókra való feltöltése részben vagy egészben tilos, illetve csak a tantárgyfelelős előzetes engedélyével történhet.

Copyright © 2020, BME VIK

Bertrand-paradoxon

Feladvány: Válasszuk ki egy kör egy húrját véletlenszerűen. Mi a valószínűsége, hogy a húr hosszabb, mint a körbe írható szabályos háromszög egy oldala?

a)
$$\frac{1}{3}$$
 b) $\frac{1}{2}$
c) $\frac{1}{4}$ d) egyik sem



Bertrand-paradoxon, v1

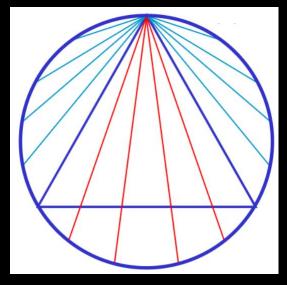
Egyenletesen véletlenszerűen választunk:

- 1. a körvonalon P pontot, aztán
- 2. a körvonalon Q pontot.

Vegyük a PQ húrt.

Válasz: $\frac{1}{3}$

Magyarázat: rajzoljuk be a P csúcsú szabályos háromszöget. Kedvező eset: ha Q a háromszög másik két csúcsa közti körívre esik.



Bertrand-paradoxon, v2

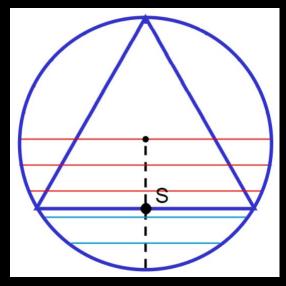
Egyenletesen véletlenszerűen választunk:

- 1. a körvonalon P pontot, aztán
- 2. a PO sugáron S pontot.

Vegyük a PO-ra vett merőleges húrt S-ben.

Válasz: $\frac{1}{2}$

Magyarázat: rajzoljuk be a P-vel átellenes csúcsú szabályos háromszöget. Kedvező eset: ha S a háromszögön belül van.



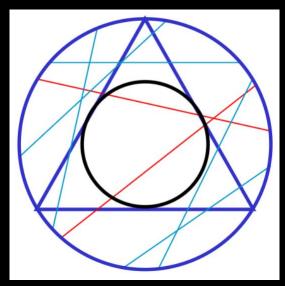
Bertrand-paradoxon, v3

Egyenletesen véletlenszerűen választunk: a körlapon P pontot. 1.

Vegyük azt a húrt, aminek felezőpontja P.

Válasz:

Magyarázat: rajzoljunk be egy tetszőleges szabályos háromszöget, és beírható körét. A kis kör sugara fele a nagy kör sugarának. Kedvező eset: ha P a körön belül van. $\left(\frac{r}{2}\right)^2 \pi / r^2 \pi = \frac{1}{4}$



Bertrand-paradoxon, sűrűségfüggvény

Kérdés: Mi a húr hosszának sűrűségfüggvénye, $F_X(x) = \mathbb{P}(h ext{úr} < x) = mondjuk az 1. módszernél?$

$$\frac{2 \cdot |\{\alpha \in [0, \pi] \mid \alpha \text{ kp.-i szögű húr} < x\}|}{2\pi}$$

Számláló (koszinusz-tétellel):

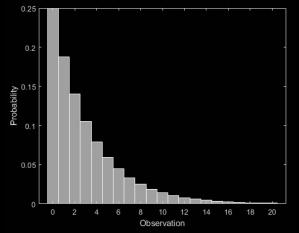
$$\sqrt{1^2 + 1^2 - 2 \cdot \cos(\alpha)} < x \iff \alpha < \arccos\left(1 - \frac{x^2}{2}\right)$$
$$F_X(x) = \frac{1}{\pi} \arccos\left(1 - \frac{x^2}{2}\right) \Rightarrow f_X(x) = F'_X(x) = \frac{2}{\pi} \frac{1}{\sqrt{4 - x^2}}$$

Geometriai eloszlás

Példák:

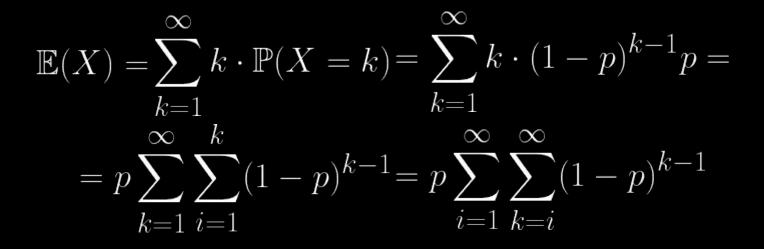
- Cérnát próbálunk befűzni, hányadszorra sikerül.
- Addig jár a korsó a kútra...
- Független kísérletek, első siker sorszáma.

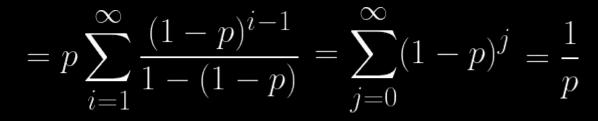
Definíció: Az X val. változó geometriai eloszlású p paraméterrel (ahol $\ 0), ha$



$$\mathbb{P}(X=k)=(1-p)^{k-1}p \quad (\forall k=1,2,\dots)$$
 Jelölés: $X\sim \operatorname{Geo}(p)$

Geometriai eloszlás, várható érték





Exponenciális eloszlás

Definíció: Egy Z val. változó exponenciális eloszlású $\lambda\,$ paraméterrel (ahol $\lambda>0\,$ valós), ha

$$f_Z(x) = \begin{cases} \lambda e^{-\lambda x} & \text{ha } x > 0, \\ 0 & \text{egyébként,} \end{cases}$$

$$F_Z(x) = \begin{cases} 1 - e^{-\lambda x} & \text{ha } x > 0, \\ 0 & \text{egyébként.} \end{cases}$$

Jelölés:

$$Z \sim \operatorname{Exp}(\lambda)$$

Példák:

- Idei első áramszünet időpontja,
- Mikor hív már fel XY?
- Sűrű, egymás utáni "kísérletek" közül az első siker időpontja.

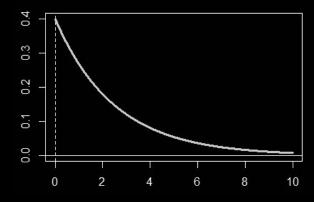
Exponenciális eloszlás

Ez valóban sűrűségfüggvény, hiszen

- nemnegatív
- integrálja:

$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = \int_{0}^{\infty} \lambda e^{-\lambda x} \mathrm{d}x =$$

$$\left[-e^{-\lambda x}\right]_{0}^{\infty} = 0 + e^{-0} = 1$$



Exponenciális eloszlás, várható érték

$$\mathbb{E}(Z) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \int_0^{\infty} \lambda x e^{-\lambda x} dx = \\ = \left[x(-e^{-\lambda x}) \right]_0^{\infty} - \int_0^{\infty} (-e^{-\lambda x}) dx$$

$$= 0 + \int_0^\infty e^{-\lambda x} \mathrm{d}x = 0 - \frac{1}{-\lambda} = \frac{1}{\lambda}$$

Exponenciális eloszlás, példa

Feladat. (2019-es pótZH, 4.) Felfogadtunk egy kivitelezőt egy felújításhoz, aki a munkát csak később, $Exp(\lambda)$ eloszlású idő múlva tudja elkezdeni. Maga a munka legalább 4, legfeljebb λ időegységig tart ($\lambda \ge 4$), de nem tudjuk pontosan meddig: a fenti két határ között bármilyen időtartam előfordulhat, egyenletes eloszlással. Mennyi λ értéke, ha várhatóan 10 időegység alatt készülünk el, a kezdeti várakozást is beleszámolva?

Kezdésig eltelt idő: $X \sim \operatorname{Exp}(\lambda)$ Munka ideje: $Y \sim U(4; \lambda)$ $10 = \mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y) = \frac{1}{\lambda} + \frac{4 + \lambda}{2}$ $\Rightarrow \lambda_{1,2} = \frac{16 \pm \sqrt{248}}{2}$ de $\lambda \ge 4$ ezért $\lambda \approx 15,87$

Örökifjúság

Definíció: Nevezzünk egyXval. változót örökifjúnak a $G\subseteq\mathbb{R}$ halmazon, ha tetszőleges $s,t\in G$ esetén $\mathbb{P}(X>t+s\mid X>s)=\mathbb{P}(X>t)$

illetve $\mathbb{P}(X \in G) = 1.$

Tipikus kérdések:

- Tessék? "Akár várok már S ideje, akár most kezdtem várni, annak a valószínűsége, hogy még több, mint t ideig kell várnom, ugyanaz."
- Van-e ilyen valószínűségi változó? Az G-től függ.

Örökifjúság, biz.

Állítás: Legyen Xnem-konstans örökifjú val. változó a G halmazon.

- 1. Ha $G = \{1, 2, 3, \dots\}$, akkor X eloszlása geometriai.
- 2. Ha $G = [0,\infty)$, akkor X eloszlása exponenciális.

Bizonyítás: Az örökifjúság feltétele ekvivalensen,

$$\mathbb{P}(X > t + s) = \mathbb{P}(X > t)\mathbb{P}(X > s) \qquad (\forall s, t \in G)$$

Örökifjúság, biz. 1

1. eset: $G = \{1, 2, 3, \dots\}$

Rögzítsünk egy t pozitív egészt, és jelölje $p=\mathbb{P}(X=1)$ $\mathbb{P}(X>t+1)=\mathbb{P}(X>t)\mathbb{P}(X>1)=$

$$= \mathbb{P}(X > t) \cdot (1 - p) = \dots = (1 - p)^{t+1}$$

Ebből már kiszámolhatjuk az eloszlást:

$$\mathbb{P}(X = t) = \mathbb{P}(X > t - 1) - \mathbb{P}(X > t) =$$
$$= (1 - p)^{t-1} - (1 - p)^t = p(1 - p)^{t-1}$$

Örökifjúság, biz. 2

2. eset: $G=[0,\infty)$

Jelölés: $g(t) = \ln \mathbb{P}(X > t)$ minden pozitív valós t -re.

Tetszőleges $s,t\in [0,\infty)$ esetén

$$g(t+s) = \ln \mathbb{P}(X > t+s) =$$
$$= \ln \mathbb{P}(X > t) + \ln \mathbb{P}(X > s) = g(t) + g(t) + g(t) = 0$$

Ebből és g definíciójából kihozható, hogy valamilyen pozitív λ értékre

(s)

$$g(t) = -\lambda t \quad (\forall t > 0) \quad \Rightarrow \quad P(X > t) = e^{-\lambda t}$$

Exponenciális egész része

Állítás: Legyen $X \sim \operatorname{Exp}(\lambda)$. Ekkor $\lceil X \rceil \sim \operatorname{Geo}(1 - e^{-\lambda})$.

$$\begin{split} & \operatorname{Bizony(tás: Legyen } k > 0 \ \operatorname{egész.} \\ & \operatorname{\mathbb{P}} \left(\lceil X \rceil = k \right) = \operatorname{\mathbb{P}} (k - 1 < X \leq k) = \\ & = F_X(k) - F_X(k - 1) = (1 - e^{-\lambda k}) - (1 - e^{-\lambda (k - 1)}) \\ & = e^{-\lambda (k - 1)} - e^{-\lambda k} = e^{-\lambda (k - 1)} (1 - e^{-\lambda}) = (1 - p)^{k - 1} p \end{split}$$

Poisson-eloszlás, definíció

Definíció: Az X val. változó Poisson-eloszlású λ paraméterrel (ahol $\lambda>0$), ha

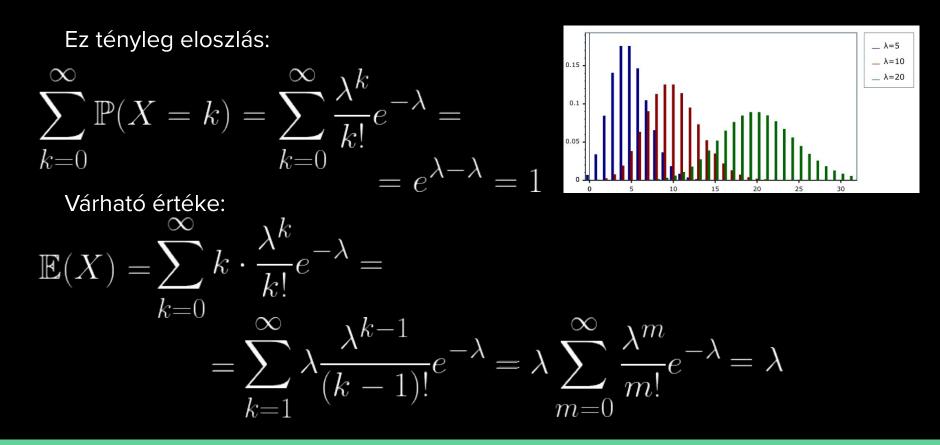
$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad (\forall k=0,1,2,\dots)$$

Jelölés: $X \sim \operatorname{Pois}(\lambda)$

Példák:

- Adott órában születő gyerekek száma.
- Szerverre beérkező request-ek száma adott időintervallumban.
- Általában: rengeteg kis valószínűségű, egymástól független eseményből hány következik be.

Poisson-eloszlás, várható érték



Poisson-eloszlás, példa

Feladat: Egy kaszkadőr egy évben átlagosan kétszer sérül meg. Mi a valószínűsége, hogy idén éppen négyszer?

Sérülések száma: Y Kérdés: $\mathbb{P}(Y=4)=?$ Feltesszük, hogy $Y\sim \mathrm{Pois}(\lambda)$

Tudjuk, hogy $2=\mathbb{E}(Y)=\lambda$

$$\mathbb{P}(Y=4) = \frac{2^4}{4!}e^{-2} = \frac{2}{3}e^{-2} \approx 0,0902$$

Poisson-approximáció

Állítás: Legyen n pozitív egész, $\lambda \in (0,\infty)$, és jelölje $p_n = \frac{\lambda}{n}$ -et. Ekkor

$$\lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda} \quad (\forall k = 0, 1, 2, \dots)$$

Megjegyzések:

• Ha
$$X \sim B\left(n; \frac{\lambda}{n}
ight)$$
 ahol n "nagy", de λ nem, akkor X kb. Poisson.

• Határeloszlás-tétel: egy eloszlásokból álló sorozat "határértékének" leírása.

Poisson-approximáció

Bizonyítás: legyen k és nrögzített.

$$\binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k} =$$

Poisson-eloszlás, példa

Példa: Tegyük fel, hogy egy magyarérettségiben kétszer akkora eséllyel van összesen 3 elírás, mint 1 elírás. Tegyük fel, hogy a hibák egymástól függetlenül, azonos eséllyel következnek be. Közelítőleg mekkora a valószínűsége, hogy egyáltalán nincs elírás a dolgozatban?

Hibák száma: X Kérdés: $\mathbb{P}(X=0)=?$ Közelítőleg: $X\sim \mathrm{Pois}(\lambda)$

$$2 = \frac{\mathbb{P}(X=3)}{\mathbb{P}(X=1)} = \frac{\lambda^3}{3!} e^{-\lambda} / \frac{\lambda}{1!} e^{-\lambda} = \frac{\lambda^2}{6} \implies \lambda = 2\sqrt{3}$$
$$\cdots \implies \mathbb{P}(X=0) = e^{-2\sqrt{3}}$$

Köszönöm a figyelmet!