Valószínúségszámítás

2020. október 14.

Mészáros Szabolcs

Tárgyhonlap:
cs.bme.hu/valszam

A prezentáció anyagát és az abból készült videofelvételt a tárgy hallgatói jogosultak használni, kizárólag saját célra. A felvétel másolása, videómegosztókra való feltöltése részben vagy egészben tilos, illetve csak a tantárgyfelelős előzetes engedélyével történhet.

Bertrand-paradoxon

Feladvány: Válasszuk ki egy kör egy húrját véletlenszerűen. Mi a valószínúsége, hogy a húr hosszabb, mint a körbe írható szabályos háromszög egy oldala?
a) $\frac{1}{3}$
b) $\frac{1}{2}$

$$
\text { c) } \frac{1}{4}
$$

d) egyik sem

Bertrand-paradoxon, v1

Egyenletesen véletlenszerűen választunk:

1. a körvonalon P pontot, aztán
2. a körvonalon Q pontot.

Vegyük a PQ húrt.
Válasz: $\frac{1}{3}$
Magyarázat: rajzoljuk be a P csúcsú szabályos háromszöget. Kedvező eset: ha Q a háromszög
 másik két csúcsa közti körívre esik.

Bertrand-paradoxon, v2

Egyenletesen véletlenszerűen választunk:

1. a körvonalon P pontot, aztán
2. a PO sugáron S pontot.

Vegyük a PO-ra vett merőleges húrt S-ben.
Válasz: $\frac{1}{2}$
Magyarázat: rajzoljuk be a P-vel átellenes csúcsú szabályos háromszöget. Kedvező eset:
 ha S a háromszögön belül van.

Bertrand-paradoxon, v3

Egyenletesen véletlenszerűen választunk:

1. a körlapon P pontot.

Vegyük azt a húrt, aminek felezőpontja P.
Válasz: $\frac{1}{4}$
Magyarázat: rajzoljunk be egy tetszőleges szabályos háromszöget, és beírható körét. A kis
 kör sugara fele a nagy kör sugarának. Kedvező eset: ha P a körön belül van. $\left(\frac{r}{2}\right)^{2} \pi / r^{2} \pi=\frac{1}{4}$

Bertrand-paradoxon, sűrűségfüggvény

Kérdés: Mi a húr hosszának sűrűségfüggvénye, mondjuk az 1. módszernél?

$$
F_{X}(x)=\mathbb{P}(\text { húr }<x)=
$$

$$
\underline{2 \cdot \mid\{\alpha \in[0, \pi] \mid \alpha \text { kp.-i szögű húr }<x\} \mid}
$$

Számláló (koszinusz-tétellel): 2π

$$
\begin{gathered}
\sqrt{1^{2}+1^{2}-2 \cdot \cos (\alpha)}<x \Longleftrightarrow \alpha<\arccos \left(1-\frac{x^{2}}{2}\right) \\
F_{X}(x)=\frac{1}{\pi} \arccos \left(1-\frac{x^{2}}{2}\right) \Rightarrow f_{X}(x)=F_{X}^{\prime}(x)=\frac{2}{\pi} \frac{1}{\sqrt{4-x^{2}}}
\end{gathered}
$$

Geometriai eloszlás

Példák:

- Cérnát próbálunk befüzni, hányadszorra sikerül.
- Addig jár a korsó a kútra...
- Független kísérletek, első siker sorszáma.

Definíció: Az X val. változó geometriai eloszlású p
 paraméterrel (ahol $0<p<1$), ha

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p \quad(\forall k=1,2, \ldots)
$$

Jelölés: $X \sim \operatorname{Geo}(p)$

Geometriai eloszlás, várható érték

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{k=1}^{\infty} k \cdot \mathbb{P}(X=k)=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} p= \\
& =p \sum_{k=1}^{\infty} \sum_{i=1}^{k}(1-p)^{k-1}=p \sum_{i=1}^{\infty} \sum_{k=i}^{\infty}(1-p)^{k-1} \\
& =p \sum_{i=1}^{\infty} \frac{(1-p)^{i-1}}{1-(1-p)}=\sum_{j=0}^{\infty}(1-p)^{j}=\frac{1}{p}
\end{aligned}
$$

Exponenciális eloszlás

Definíció: Egy Z val. változó exponenciális eloszlású λ paraméterrel (ahol $\lambda>0$ valós), ha

$$
\begin{aligned}
& f_{Z}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { ha } x>0 \\
0 & \text { egyébként }\end{cases} \\
& F_{Z}(x)= \begin{cases}1-e^{-\lambda x} & \text { ha } x>0 \\
0 & \text { egyébként }\end{cases}
\end{aligned}
$$

Jelölés:

$$
Z \sim \operatorname{Exp}(\lambda)
$$

Példák:

- Idei első áramszünet időpontja,
- Mikor hív már fel XY?
- Sűrứ, egymás utáni "kísérletek" közül az első siker időpontja.

Exponenciális eloszlás

Ez valóban sűrűségfüggvény, hiszen

- nemnegatív
- integrálja:

$$
\begin{gathered}
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{\infty} \lambda e^{-\lambda x} \mathrm{~d} x= \\
{\left[-e^{-\lambda x}\right]_{0}^{\infty}=0+e^{-0}=1}
\end{gathered}
$$

Exponenciális eloszlás, várható érték

$$
\begin{aligned}
\mathbb{E}(Z) & =\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} \lambda x e^{-\lambda x} \mathrm{~d} x= \\
& =\left[x\left(-e^{-\lambda x}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-e^{-\lambda x}\right) \mathrm{d} x \\
& =0+\int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x=0-\frac{1}{-\lambda}=\frac{1}{\lambda}
\end{aligned}
$$

Exponenciális eloszlás, példa

Feladat. (2019-es pótZH, 4.) Felfogadtunk egy kivitelezőt egy felújításhoz, aki a munkát csak később, Exp (λ) eloszlású idő múlva tudja elkezdeni. Maga a munka legalább 4, legfeljebb λ időegységig tart ($\lambda \geq 4$), de nem tudjuk pontosan meddig: a fenti két határ között bármilyen időtartam előfordulhat, egyenletes eloszlással. Mennyi λ értéke, ha várhatóan 10 időegység alatt készülünk el, a kezdeti várakozást is beleszámolva?

Kezdésig eltelt idó: $X \sim \operatorname{Exp}(\lambda) \quad$ Munka ideje: $Y \sim U(4 ; \lambda)$

$$
\begin{aligned}
10 & =\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)=\frac{1}{\lambda}+\frac{4+\lambda}{2} \\
& \Rightarrow \lambda_{1,2}=\frac{16 \pm \sqrt{248}}{2} \text { de } \lambda \geq 4 \text { ezért } \quad \lambda \approx 15,87
\end{aligned}
$$

Örökifjúság

Definíció: Nevezzünk egy X val. változót örökiffúnak a $G \subseteq \mathbb{R}$ halmazon, ha tetszőleges $s, t \in G$ esetén

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t)
$$

illetve $\mathbb{P}(X \in G)=1$.
Tipikus kérdések:

- Tessék? "Akár várok már S ideje, akár most kezdtem várni, annak a valószínúsége, hogy még több, mint t ideig kell várnom, ugyanaz."
- Van-e ilyen valószínúségi változó? Az G-töl függ.

Örökifjúság, biz.

Állítás: Legyen X nem-konstans örökiffú val. változó a G halmazon.

1. Ha $G=\{1,2,3, \ldots\}$, akkor X eloszlása geometriai.
2. Ha $G=[0, \infty)$, akkor X eloszlása exponenciális.

Bizonyittás: Az örökifjúság feltétele ekvivalensen,

$$
\mathbb{P}(X>t+s)=\mathbb{P}(X>t) \mathbb{P}(X>s) \quad(\forall s, t \in G)
$$

Örökifjúság, biz. 1

1. eset: $G=\{1,2,3, \ldots\}$

Rögzítsünk egy t pozitív egészt, és jelölje $p=\mathbb{P}(X=1)$

$$
\begin{aligned}
& \mathbb{P}(X>t+1)=\mathbb{P}(X>t) \mathbb{P}(X>1)= \\
& =\mathbb{P}(X>t) \cdot(1-p)=\ldots=(1-p)^{t+1}
\end{aligned}
$$

Ebből már kiszámolhatjuk az eloszlást:

$$
\begin{aligned}
& \mathbb{P}(X=t)=\mathbb{P}(X>t-1)-\mathbb{P}(X>t)= \\
& =(1-p)^{t-1}-(1-p)^{t}=p(1-p)^{t-1}
\end{aligned}
$$

Örökifjúság, biz. 2

2. eset: $G=[0, \infty)$ Jelölés: $g(t)=\ln \mathbb{P}(X>t)$ minden pozitív valós t-re.

Tetszőleges $s, t \in[0, \infty)$ esetén

$$
\begin{aligned}
& g(t+s)=\ln \mathbb{P}(X>t+s)= \\
& \quad=\ln \mathbb{P}(X>t)+\ln \mathbb{P}(X>s)=g(t)+g(s)
\end{aligned}
$$

Ebből és g definíciójából kihozható, hogy valamilyen pozitív λ értékre

$$
g(t)=-\lambda t \quad(\forall t>0) \Rightarrow P(X>t)=e^{-\lambda t}
$$

Exponenciális egész része

Allítás: Legyen $X \sim \operatorname{Exp}(\lambda)$. $\operatorname{Ekkor}\lceil X\rceil \sim \operatorname{Geo}\left(1-e^{-\lambda}\right)$.
Bizonyitás: Legyen $k>0$ egész.

$$
\begin{aligned}
& \mathbb{P}(\lceil X\rceil=k)=\mathbb{P}(k-1<X \leq k)= \\
& \quad=F_{X}(k)-F_{X}(k-1)=\left(1-e^{-\lambda k}\right)-\left(1-e^{-\lambda(k-1)}\right) \\
& \quad=e^{-\lambda(k-1)}-e^{-\lambda k}=e^{-\lambda(k-1)}\left(1-e^{-\lambda}\right)=(1-p)^{k-1} p
\end{aligned}
$$

Poisson-eloszlás, definíció

Definíció: Az X val. változó Poisson-eloszlású λ paraméterrel (ahol $\lambda>0$), ha

$$
\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad(\forall k=0,1,2, \ldots)
$$

Jelölés: $X \sim \operatorname{Pois}(\lambda)$

Példák:

- Adott órában születő gyerekek száma.
- Szerverre beérkező request-ek száma adott időintervallumban.
- Általában: rengeteg kis valószínűségư, egymástól független eseményből hány következik be.

Poisson-eloszlás, várható érték

Ez tényleg eloszlás:

$$
\begin{aligned}
& \begin{array}{l}
-\lambda=5 \\
-\lambda=10
\end{array}
\end{aligned}
$$

Várható értéke:

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{k=0}^{\infty} k \cdot \frac{\lambda^{k}}{k!} e^{-\lambda}= \\
&=\sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}=\lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} e^{-\lambda}=\lambda
\end{aligned}
$$

Poisson-eloszlás, példa

Feladat: Egy kaszkadőr egy évben átlagosan kétszer sérül meg. Mi a valószínűsége, hogy idén éppen négyszer?

Sérülések száma: $Y \quad$ Kérdés: $\mathbb{P}(Y=4)=$?
Feltesszük, hogy $Y \sim \operatorname{Pois}(\lambda)$
Tudjuk, hogy $2=\mathbb{E}(Y)=\lambda$

$$
\mathbb{P}(Y=4)=\frac{2^{4}}{4!} e^{-2}=\frac{2}{3} e^{-2} \approx 0,0902
$$

Poisson-approximáció

Állítás: Legyen n pozitív egész, $\lambda \in(0, \infty)$, és jelölje $p_{n}=\frac{\lambda}{n}$-et.
Ekkor

$$
\lim _{n \rightarrow \infty}\binom{n}{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad(\forall k=0,1,2, \ldots)
$$

Megjegyzések:

- Ha $X \sim B\left(n ; \frac{\lambda}{n}\right)$ ahol n "nagy", de λ nem, akkor X kb. Poisson.
- Határeloszlás-tétel: egy eloszlásokból álló sorozat "határértékének" leírása.

Poisson-approximáció

Bizonyítás: legyen k és n rögzített.

$$
\begin{aligned}
& \binom{n}{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}= \\
& =\frac{n!}{(n-k)!n^{k}} \cdot \frac{\lambda^{k}}{k!} \cdot\left(1-\frac{\lambda}{n}\right)^{n} \cdot\left(1-\frac{\lambda}{n}\right)^{-k} \\
& \begin{array}{ccc}
\downarrow & \downarrow & \downarrow \\
1 & e^{-\lambda} & 1
\end{array} \\
& n \rightarrow \infty
\end{aligned}
$$

Poisson-eloszlás, példa

Példa: Tegyük fel, hogy egy magyarérettségiben kétszer akkora eséllyel van összesen 3 elírás, mint 1 elírás. Tegyük fel, hogy a hibák egymástól függetlenül, azonos eséllyel következnek be. Közelítőleg mekkora a valószínűsége, hogy egyáltalán nincs elírás a dolgozatban?

Hibák száma: $X \quad$ Kérdés: $\mathbb{P}(X=0)=$?
Közelítőleg: $X \sim \operatorname{Pois}(\lambda)$

$$
\begin{aligned}
2=\frac{\mathbb{P}(X=3)}{\mathbb{P}(X=1)}=\frac{\lambda^{3}}{3!} e^{-\lambda / \frac{\lambda}{1!}} e^{-\lambda}=\frac{\lambda^{2}}{6} \Rightarrow \lambda=2 \sqrt{3} \\
\cdots \Rightarrow \mathbb{P}(X=0)=e^{-2 \sqrt{3}}
\end{aligned}
$$

Köszönöm a figyelmet!

