Valószínűségszámítás

2020. november 25. Mészáros Szabolcs Tárgyhonlap: cs.bme.hu/valszam A prezentáció anyagát és az abból készült videofelvételt a tárgy hallgatói jogosultak használni, kizárólag saját célra. A felvétel másolása, videómegosztókra való feltöltése részben vagy egészben tilos, illetve csak a tantárgyfelelős előzetes engedélyével történhet.

Copyright © 2020, BME VIK

Ismétlés: kovariancia

Definíció: Legyenek X és Y valószínűségi változók. Ekkor

$$\operatorname{cov}(X,Y) = \mathbb{E}\big((X - \mathbb{E}X)(Y - \mathbb{E}Y)\big) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Kérdés: Hogyan számoljuk ki $\mathbb{E}(XY)$ -t, ha csak az $f_{X,Y}$ együttes sűrűségfüggvényt ismerjük?

Ötletek:

- Szorzat sűrűségfüggvényével? De azt hogy kapjuk meg?
- Konvolúció-szerű képlet szorzatra? De nem feltétlenül függetlenek.

Többdim. transzformált várható értéke

Állítás: Legyen $\underline{X} = (X_1, \dots, X_n)$ folytonos valószínűségi vektorváltozó, és legyen $g: \mathbb{R}^n \to \mathbb{R}$ olyan, amire $g(\underline{X})$ létezik. Ekkor

$$\mathbb{E}(g(\underline{X})) = \int_{\mathbb{R}^n} g(\underline{x}) f_{\underline{X}}(\underline{x}) \mathrm{d}\underline{x}$$

Ha g folytonos és nemnegatív, akkor $\, \mathbb{E}(g(\underline{X}))$ létezik.

Többdim. transzformált várható értéke

Speciális eset:
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 $g(x, y) = x \cdot y$
 $\mathbb{E}(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x, y) \, \mathrm{d}x \mathrm{d}y$

Példa: X éves csapadékmennyiség (/1000 mm), Y idén eladott esernyők száma (/1000 db). Mennyi a kovarianciájuk, ha az együttes sűrűségfüggvényük:

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{5}(4 - 2x^2 + xy - y^2) & \text{ha } 0 < x < 1 \text{ és } 0 < y < 2, \\ 0 & \text{egyébként.} \end{cases}$$

Többdim. transzformált várható értéke, példa

$$\begin{split} \mathsf{E}(XY) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y \\ &= \int_{0}^{2} \int_{0}^{1} xy \cdot \frac{1}{5} (4 - 2x^{2} + xy - y^{2}) \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{5} \int_{0}^{2} \int_{0}^{1} (4xy - 2x^{3}y + x^{2}y^{2} - xy^{3}) \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{5} \int_{0}^{2} \left[2x^{2}y - \frac{1}{2}x^{4}y + \frac{1}{3}x^{3}y^{2} - \frac{1}{2}x^{2}y^{3} \right]_{x=0}^{1} \mathrm{d}y \end{split}$$

Többdim. transzformált várható értéke, példa

$$=\frac{1}{5}\int_{0}^{2}\left(\frac{3}{2}y+\frac{1}{3}y^{2}-\frac{1}{2}y^{3}\right)\mathrm{d}y=\frac{1}{5}\left[\frac{3}{4}y^{2}+\frac{1}{9}y^{3}-\frac{1}{8}y^{4}\right]_{0}^{2}=\frac{7}{15}$$

$$\begin{split} \mathbb{E}(X) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y & \mathbb{E}(Y) = \frac{4}{5} \\ &= \int_{0}^{2} \int_{0}^{1} x \cdot \frac{1}{5} (4 - 2x^{2} + xy - y^{2}) \mathrm{d}x \mathrm{d}y = \frac{7}{15} \\ &= \cos(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = \frac{17}{45} - \frac{7}{15} \cdot \frac{4}{5} = \frac{1}{225} \end{split}$$

40

GL

Э

Kovariancia tulajdonságai

Lemma: Legyen (X, Y, Z) valószínűségi vektorváltozó. Ha az alábbi mennyiségek léteznek, akkor a következők teljesülnek:

1. Ha $c\in\mathbb{R}$, akkor $\overline{\mathbb{D}(X+c)}=\overline{\mathbb{D}(X)}$ és $\overline{\mathbb{D}(cX)}=|c|\overline{\mathbb{D}(X)}$ 2. $\mathbb{D}^2(X+Y) = \mathbb{D}^2(X) + \mathbb{D}^2(Y) + 2\operatorname{cov}(X,Y)$ 3. $\mathbb{D}^2(X) = 0$ pontosan akkor, ha $\mathbb{P}(X = c) = 1$ valamilyen c-re. 4. HaXésYfüggetlenek, akkor $\operatorname{COV}(X,Y)=0$. 5. Ha $b, c \in \mathbb{R}$, akkor $\operatorname{COV}(X, bY + cZ)$ $= b \cdot \operatorname{cov}(X, Y) + c \cdot \operatorname{cov}(X, Z)$

Kovariancia tulajdonságai, példa

Lemma: Ha X és Y független valószínűségi változók, g és h folytonos $\mathbb{R} \to \mathbb{R}$ függvények, akkor g(X) és h(Y) is függetlenek.

Példa: A fenti függetlenségi feltétel esetén

$$\operatorname{cov}\left(\frac{2}{X} + Y^{2}, \frac{2}{Y} - X^{2}\right) = \operatorname{cov}\left(\frac{2}{X}, \frac{2}{Y}\right) - \operatorname{cov}\left(\frac{2}{X}, X^{2}\right) + \operatorname{cov}\left(Y^{2}, \frac{2}{Y}\right) - \operatorname{cov}\left(Y^{2}, X^{2}\right) \\ \stackrel{\text{}}{\longrightarrow}_{O}$$

Kovariancia-mátrix

Definíció: Az $\underline{X} = (X_1, \ldots, X_n)$ val. vektorváltozó kovarianciamátrixa:

$$\operatorname{cov}(\underline{X}) = \begin{pmatrix} \operatorname{cov}(X_1, X_1) & \operatorname{cov}(X_1, X_2) & \dots & \operatorname{cov}(X_1, X_n) \\ \operatorname{cov}(X_2, X_1) & \operatorname{cov}(X_2, X_2) & & \vdots \\ \vdots & & \ddots & \\ \operatorname{cov}(X_n, X_1) & \dots & & \operatorname{cov}(X_n, X_n) \end{pmatrix}$$

azaz $\operatorname{cov}(\underline{X})_{i,j} = \operatorname{cov}(X_i, X_j)$ Megj.: $\operatorname{cov}(X_i, X_i) = \mathbb{D}^2(X_i)$

Kovariancia-mátrix, példa

 $\operatorname{cov}((X,Y)) = \begin{pmatrix} ? & \frac{1}{225} \\ \frac{1}{225} & ? \end{pmatrix}$ Példa: az előző. $\mathbb{D}^2(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 =$ $= \int_{0}^{2} \int_{0}^{1} x^{2} \cdot \frac{1}{5} (4 - 2x^{2} + xy - y^{2}) \mathrm{d}x \mathrm{d}y$ $\mathbb{D}^2(Y) = \frac{58}{227}$ $-\left(\int_{0}^{2}\int_{0}^{1}x\cdot\frac{1}{5}(4-2x^{2}+xy-y^{2})\mathrm{d}x\mathrm{d}y\right)^{2} = \frac{7}{90}$

Kovariancia-mátrix tulajdonságai

Állítás: Legyen $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó. Ekkor

1. $\operatorname{COV}(\underline{X})$ szimmetrikus mátrix,

2. $\operatorname{cov}(\underline{X})$ pozitív szemidefinit mátrix (azaz $\underline{a}^T \operatorname{cov}(\underline{X}) \underline{a} \ge 0$, $\forall \underline{a} \in \mathbb{R}^n$).

Példa: az $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ szimmetrikus mátrix, de nem pozitív szemidefinit, mert $\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -1$

Kovariancia-mátrix tulajdonságai, biz.

Biz.: Szimmetrikus, azaz
$$\operatorname{cov}(X_i, X_j) = \operatorname{cov}(X_j, X_i)$$

Pozitív szemidefinit: Legyen $Z = \sum_{i=1}^n a_i X_i$
 $\mathbb{D}^2(Z) = \mathbb{D}^2 \Big(\sum_{i=1}^n a_i X_i\Big) = \operatorname{cov}\Big(\sum_{i=1}^n a_i X_i, \sum_{j=1}^n a_j X_j\Big)$
 $\stackrel{\checkmark}{\sim}_{\mathcal{O}}$
 $= \sum_{i=1}^n \sum_{j=1}^n a_i \operatorname{cov}(X_i, X_j) a_j = \underline{a}^T \operatorname{cov}(\underline{X}) \underline{a}$

Lineáris regresszió, fogalmak

Regresszió változatai:

- lineáris regresszió
 - <u>egyszerű lineáris regresszió</u>, avagy legkisebb négyzetek módszere
 - regularizált lineáris regresszió (ridge, lasso, ...)
 - 0
- logisztikus regresszió
- lokális regresszió
 - •

Forrás:

https://charleshsliao.wordpress.com/2017/06/16/ransacand-nonlinear-regression-in-python/

Lineáris regresszió, definíció

Definíció: Legyenek Xés Yval. változók. Ekkor az Y-nak az X-re vett *lineáris regresszió*ján azt a $\beta X + \alpha$ val. változót értjük, amire $\alpha, \beta \in \mathbb{R}$, és az

$$\mathbb{E}\Big(\big(Y - (\beta X + \alpha)\big)^2\Big)$$

mennyiség minimális.

Értelmezés: Megpróbáljuk megtippelni Y-t az X-nek egy lineáris függvényét használva, a lehető legkisebb átlagos négyzetes hibával.

Lineáris regresszió, állítás

Állítás: Legyenek X és Y olyan valószínűségi változók, amire $\operatorname{cov}(X,Y)$, $\mathbb{D}^2(X), \mathbb{D}^2(Y)$ véges, és $\mathbb{D}^2(X) \neq 0$. Ekkor az Y-nak az X-re vett

lineáris regressziós együtthatói:

$$\beta = \frac{\operatorname{cov}(X,Y)}{\mathbb{D}^2(X)} \qquad \qquad \alpha = \mathbb{E}(Y) - \frac{\operatorname{cov}(X,Y)}{\mathbb{D}^2(X)} \mathbb{E}(X)$$

Lineáris regresszió, példa

Példa: az előző, csapadékmennyiséges.

$$\beta = \frac{\operatorname{cov}(X, Y)}{\mathbb{D}^2(X)} = \frac{1/225}{7/90} = \frac{2}{35}$$
$$\alpha = \mathbb{E}(Y) - \frac{\operatorname{cov}(X, Y)}{\mathbb{D}^2(X)} \mathbb{E}(X) = \frac{4}{5} - \frac{2}{35} \frac{7}{15} = \frac{58}{75}$$

Tehát a lineáris regresszió:

$$\frac{2}{35}X + \frac{58}{75}$$

Lineáris regresszió, alternatív felírás

Definíció: Az Y val. változó X -re vett regressziós egyenese az $\{(x,y) \in \mathbb{R}^2 \mid y = \beta x + \alpha\}$

egyenes a síkon, ahol lpha és eta a lineáris regressziós együtthatók.

Kérdés: Hogy a szöszbe jegyzem meg az együtthatók formuláit?

Lehetséges válasz: Ha Y-t próbálja közelíteni a $\beta X + \alpha$, akkor logikus lenne, ha az alábbiak teljesülnének:

 $\mathbb{E}(Y) = \mathbb{E}(\beta X + \alpha) \qquad \operatorname{cov}(X, Y) = \operatorname{cov}(X, \beta X + \alpha)$

Ebből a két egyenletből átrendezéssel adódik a korábbi két egyenlet.

Lineáris regresszió, korrelációval

Definíció: Legyenek X és Y valószínűségi változók. Ekkor

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\mathbb{D}(X)\mathbb{D}(Y)}$$

ami egy -1 és +1 közti szám (ha létezik).

Kérdés: felírható a lineáris regresszió korrelációval (egyszerűen)?

Válasz: A regressziós együtthatók éppen azok, amikre teljesül, hogy

$$\frac{(\beta X + \alpha) - \mathbb{E}(Y)}{\mathbb{D}(Y)} = \frac{X - \mathbb{E}(X)}{\mathbb{D}(X)} \cdot \operatorname{corr}(X, Y)$$

Lineáris regresszió, bizonyítás

Biz.: Amit minimalizálnunk kell:

$$\begin{split} h(\alpha,\beta) &= \mathbb{E}\Big(\big(Y - (\beta X + \alpha)\big)^2\Big) \\ &= \mathbb{E}\Big(Y^2 + \beta^2 X^2 + \alpha^2 - 2\beta XY - 2\alpha Y + 2\alpha\beta X\Big) \\ &= \mathbb{E}(Y^2) + \beta^2 \mathbb{E}(X^2) + \alpha^2 - 2\beta \mathbb{E}(XY) - 2\alpha \mathbb{E}(Y) + 2\alpha\beta \mathbb{E}(X) \end{split}$$

Deriválással kereshető a minimumhelye:

 α szerint: $2\alpha - 2\mathbb{E}(Y) + 2\beta\mathbb{E}(X)$ β szerint: $2\beta\mathbb{E}(X^2) - 2\mathbb{E}(XY) + 2\alpha\mathbb{E}(X)$

Lineáris regresszió, bizonyítás

Biz. (folyt.): A parciális deriváltak pontosan akkor nullák, ha

$$\alpha + \beta \mathbb{E}(X) = \mathbb{E}(Y)$$
$$\alpha \mathbb{E}(X) + \beta \mathbb{E}(X^2) = \mathbb{E}(XY)$$

Ennek a megoldása:

$$\begin{split} \alpha &= \mathbb{E}(Y) - \beta \mathbb{E}(X) = \mathbb{E}(Y) - \frac{\operatorname{cov}(X,Y)}{\mathbb{D}^2(X)} \mathbb{E}(X) \\ \beta &= \frac{\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)}{\mathbb{E}(X^2) - \mathbb{E}(X)^2} = \frac{\operatorname{cov}(X,Y)}{\mathbb{D}^2(X)} \end{split}$$

Lineáris regresszió hibája

Állítás: Legyen az Y val. változó X-re vett lineáris regressziója eta X + lpha. Ekkor

$$\mathbb{D}^2\Big(Y - (\beta X + \alpha)\Big) = \mathbb{D}^2(Y) - \frac{\operatorname{cov}(X, Y)^2}{\mathbb{D}^2(X)}$$

Megj.: Korrelációval felírva

$$\mathbb{D}^{2}\left(Y - (\beta X + \alpha)\right) = \mathbb{D}^{2}(Y) \cdot \left(1 - \operatorname{corr}(X, Y)^{2}\right)$$

Lineáris regresszió hibája, példa

Példa: az előző.

$$\mathbb{D}^{2}\Big(Y - (\beta X + \alpha)\Big) = \mathbb{D}^{2}(Y) - \frac{\operatorname{cov}(X, Y)^{2}}{\mathbb{D}^{2}(X)}$$
$$= \frac{58}{225} - \frac{(1/225)^{2}}{7/90} \approx 0.2575$$

Lineáris regresszió hibája, biz.

$$\begin{aligned} \mathsf{Biz.:} \quad \mathbb{D}^2 \Big(Y - (\beta X + \alpha) \Big) &= \\ &= \mathbb{D}^2 (Y - \beta X) \\ &= \mathbb{D}^2 (Y) + \beta^2 \mathbb{D}^2 (X) - 2 \mathrm{cov}(Y, \beta X) \\ &= \mathbb{D}^2 (Y) + \frac{\mathrm{cov}(X, Y)^2}{\left(\mathbb{D}^2 (X)\right)^2} \mathbb{D}^2 (X) - 2 \frac{\mathrm{cov}(X, Y)}{\mathbb{D}^2 (X)} \mathrm{cov}(Y, X) \\ &= \mathbb{D}^2 (Y) - \frac{\mathrm{cov}(X, Y)^2}{\mathbb{D}^2 (X)} \end{aligned}$$

További olvasnivaló

- Devore, Berk Modern mathematical statistics with applications, Ch. 12.1.
- James, Witten, Hastie, Tibshirani An introduction to statistical learning, Ch. 3.
- Simpson's paradox
- Anscombe's quartet

Figure I

Figure 2

Köszönöm a figyelmet!