Valószínúségszámítás

2020. november 25.

Mészáros Szabolcs

Tárgyhonlap:
cs.bme.hu/valszam

A prezentáció anyagát és az abból készült videofelvételt a tárgy hallgatói jogosultak használni, kizárólag saját célra. A felvétel másolása, videómegosztókra való feltöltése részben vagy egészben tilos, illetve csak a tantárgyfelelős előzetes engedélyével történhet.

Ismétlés: kovariancia

Definíció: Legyenek X és Y valószínűségi változók. Ekkor

$$
\operatorname{cov}(X, Y)=\mathbb{E}((X-\mathbb{E} X)(Y-\mathbb{E} Y))=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

Kérdés: Hogyan számoljuk ki $\mathbb{E}(X Y)$-t, ha csak az $f_{X, Y}$ együttes sűrűségfüggvényt ismerjük?

Ötletek:

- Szorzat sűrűségfüggvényével? De azt hogy kapjuk meg?
- Konvolúció-szerű képlet szorzatra? De nem feltétlenül függetlenek.

Többdim. transzformált várható értéke

Állítás: Legyen $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ folytonos valószínúségi vektorváltozó, és legyen $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ olyan, amire $g(\underline{X})$ létezik. Ekkor

$$
\mathbb{E}(g(\underline{X}))=\int_{\mathbb{R}^{n}} g(\underline{x}) f_{\underline{X}}(\underline{x}) \mathrm{d} \underline{x}
$$

Ha g folytonos és nemnegatív, akkor $\mathbb{E}(g(\underline{X}))$ létezik.

Többdim. transzformált várható értéke

Speciális eset: $g: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad g(x, y)=x \cdot y$

$$
\mathbb{E}(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

Példa: X éves csapadékmennyiség (1000 mm),
Y idén eladott esernyők száma (1000 db).
Mennyi a kovarianciájuk, ha az együttes sưrűségfüggvényük:

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{5}\left(4-2 x^{2}+x y-y^{2}\right) & \text { ha } 0<x<1 \text { és } 0<y<2 \\ 0 & \text { egyébként }\end{cases}
$$

Többdim. transzformált várható értéke, példa

$$
\begin{aligned}
\mathbb{E}(X Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{2} \int_{0}^{1} x y \cdot \frac{1}{5}\left(4-2 x^{2}+x y-y^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{5} \int_{0}^{2} \int_{0}^{1}\left(4 x y-2 x^{3} y+x^{2} y^{2}-x y^{3}\right) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{5} \int_{0}^{2}\left[2 x^{2} y-\frac{1}{2} x^{4} y+\frac{1}{3} x^{3} y^{2}-\frac{1}{2} x^{2} y^{3}\right]_{x=0}^{1} \mathrm{~d} y
\end{aligned}
$$

Többdim. transzformált várható értéke, példa

$$
\begin{aligned}
& =\frac{1}{5} \int_{0}^{2}\left(\frac{3}{2} y+\frac{1}{3} y^{2}-\frac{1}{2} y^{3}\right) \mathrm{d} y=\frac{1}{5}\left[\frac{3}{4} y^{2}+\frac{1}{9} y^{3}-\frac{1}{8} y^{4}\right]_{0}^{2}=\frac{7}{15} \\
& \mathbb{E}(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y \quad \mathbb{E}(Y)=\frac{4}{5} \\
& g(x, y)=x \quad=\int_{0}^{2} \int_{0}^{1} x \cdot \frac{1}{5}\left(4-2 x^{2}+x y-y^{2}\right) \mathrm{d} x \mathrm{~d} y=\frac{7}{15} \\
& \operatorname{cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=\frac{17}{45}-\frac{7}{15} \cdot \frac{4}{5}=\frac{1}{225}
\end{aligned}
$$

Kovariancia tulajdonságai

Lemma: Legyen (X, Y, Z) valószínúségi vektorváltozó. Ha az alábbi mennyiségek léteznek, akkor a következők teljesülnek:

1. Ha $c \in \mathbb{R}$, akkor $\mathbb{D}(X+c)=\mathbb{D}(X)$ és $\mathbb{D}(c X)=|c| \mathbb{D}(X)$
2. $\mathbb{D}^{2}(X+Y)=\mathbb{D}^{2}(X)+\mathbb{D}^{2}(Y)+2 \operatorname{cov}(X, Y)$
3. $\mathbb{D}^{2}(X)=0$ pontosan akkor, ha $\mathbb{P}(X=c)=1$ valamilyen c-re.
4. Ha X és Y függetlenek, akkor $\operatorname{cov}(X, Y)=0$.
5. Ha $b, c \in \mathbb{R}$, akkor $\operatorname{cov}(X, b Y+c Z)$

$$
=b \cdot \operatorname{cov}(X, Y)+c \cdot \operatorname{cov}(X, Z)
$$

Kovariancia tulajdonságai, példa

Lemma: Ha X és Y független valószínúségi változók, g és h folytonos $\mathbb{R} \rightarrow \mathbb{R}$ függvények, akkor $g(X)$ és $h(Y)$ is függetlenek.

Példa: A fenti függetlenségi feltétel esetén

$$
\begin{aligned}
& \operatorname{cov}\left(\frac{2}{X}+Y^{2}, \frac{2}{Y}-X^{2}\right)= \operatorname{cov}\left(\frac{2}{X}, \frac{2}{Y}\right)-\operatorname{cov}\left(\frac{2}{X}, X^{2}\right) \\
&+\operatorname{cov}\left(Y^{2}, \frac{2}{Y}\right)-\operatorname{cov}\left(Y^{2}, X^{2}\right) \\
& \leqslant
\end{aligned}
$$

Kovariancia-mátrix

Definíció: Az $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ val. vektorváltozó kovarianciamátrixa:
$\operatorname{cov}(\underline{X})=\left(\begin{array}{cccc}\operatorname{cov}\left(X_{1}, X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{cov}\left(X_{1}, X_{n}\right) \\ \operatorname{cov}\left(X_{2}, X_{1}\right) & \operatorname{cov}\left(X_{2}, X_{2}\right) & & \vdots \\ \vdots & & \ddots & \\ \operatorname{cov}\left(X_{n}, X_{1}\right) & \ldots & & \operatorname{cov}\left(X_{n}, X_{n}\right)\end{array}\right)$
$\operatorname{azaz} \operatorname{cov}(\underline{X})_{i, j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$
$\operatorname{Megj.:~} \operatorname{cov}\left(X_{i}, X_{i}\right)=\mathbb{D}^{2}\left(X_{i}\right)$

Kovariancia-mátrix, példa

Példa: az előző.

$$
\begin{aligned}
& \mathbb{D}^{2}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}= \\
& \quad=\int_{0}^{2} \int_{0}^{1} x^{2} \cdot \frac{1}{5}\left(4-2 x^{2}+x y-y^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& -\left(\int_{0}^{2} \int_{0}^{1} x \cdot \frac{1}{5}\left(4-2 x^{2}+x y-y^{2}\right) \mathrm{d} x \mathrm{~d} y\right)^{2}=\frac{7}{90}
\end{aligned}
$$

$$
\mathbb{D}^{2}(Y)=\frac{58}{225}
$$

Kovariancia-mátrix tulajdonságai

Állítás: Legyen $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ valószínúségi vektorváltozó. Ekkor

1. $\operatorname{cov}(\underline{X})$ szimmetrikus mátrix,
2. $\operatorname{cov}(\underline{X})$ pozitív szemidefinit mátrix
(azaz $\underline{a}^{T} \operatorname{cov}(\underline{X}) \underline{a} \geq 0, \quad \forall \underline{a} \in \mathbb{R}^{n}$).
Példa: az $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ szimmetrikus mátrix, de nem pozitív szemidefinit, mert

$$
\left[\begin{array}{ll}
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=-1
$$

Kovariancia-mátrix tulajdonságai, biz.

Biz.: Szimmetrikus, azaz $\operatorname{cov}\left(X_{i}, X_{n}\right)=\operatorname{cov}\left(X_{j}, X_{i}\right)$
Pozitív szemidefinit: Legyen $Z=\sum_{i=1}^{n} a_{i} X_{i}$

$$
\underset{\substack{ \\\mathbb{D}^{2}}}{Z}=\mathbb{D}^{2}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\operatorname{cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} a_{j} X_{j}\right)
$$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \operatorname{cov}\left(X_{i}, X_{j}\right) a_{j}=\underline{a}^{T} \operatorname{cov}(\underline{X}) \underline{a}
$$

Lineáris regresszió, fogalmak

Regresszió változatai:

- lineáris regresszió
- eqyszerű lineáris regresszió, avagy legkisebb négyzetek módszere
- regularizált lineáris regresszió (ridge, lasso, ...)
○
- logisztikus regresszió
- Iokális regresszió
- ...

Forrás:
https://charleshsliao.wordpress.com/2017/06/16/ransac-and-nonlinear-regression-in-python/

Lineáris regresszió, definíció

Definíció: Legyenek X és Y val. változók. Ekkor az Y-nak az X-re vett lineáris regresszióján azt a $\beta X+\alpha$ val. változót értjük, amire $\alpha, \beta \in \mathbb{R}$, és az

$$
\mathbb{E}\left((Y-(\beta X+\alpha))^{2}\right)
$$

mennyiség minimális.
Értelmezés: Megpróbáljuk megtippelni Y-t az X-nek egy lineáris függvényét használva, a lehetó legkisebb átlagos négyzetes hibával.

Lineáris regresszió, állítás

Állítás: Legyenek X és Y olyan valószínúségi változók, amire $\operatorname{cov}(X, Y)$, $\mathbb{D}^{2}(X), \mathbb{D}^{2}(Y)$ véges, és $\mathbb{D}^{2}(X) \neq 0$. Ekkor az Y-nak az X-re vett lineáris regressziós együttható:

$$
\beta=\frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)}
$$

$$
\alpha=\mathbb{E}(Y)-\frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)} \mathbb{E}(X)
$$

Lineáris regresszió, példa

Példa: az előző, csapadékmennyiséges.

$$
\begin{aligned}
& \beta=\frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)}=\frac{1 / 225}{7 / 90}=\frac{2}{35} \\
& \alpha=\mathbb{E}(Y)-\frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)} \mathbb{E}(X)=\frac{4}{5}-\frac{2}{35} \frac{7}{15}=\frac{58}{75}
\end{aligned}
$$

Tehát a lineáris regresszió:

$$
\frac{2}{35} X+\frac{58}{75}
$$

Lineáris regresszió, alternatív felírás

Definíció: Az Y val. változó X-re vett regressziós egyenese az

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid y=\beta x+\alpha\right\}
$$

egyenes a síkon, ahol α és β a lineáris regressziós együtthatók.
Kérdés: Hogy a szöszbe jegyzem meg az együtthatók formuláit?
Lehetséges válasz: Ha Y-t próbálja közelíteni a $\beta X+\alpha$, akkor logikus lenne, ha az alábbiak teljesülnének:

$$
\mathbb{E}(Y)=\mathbb{E}(\beta X+\alpha) \quad \operatorname{cov}(X, Y)=\operatorname{cov}(X, \beta X+\alpha)
$$

Ebből a két egyenletből átrendezéssel adódik a korábbi két egyenlet.

Lineáris regresszió, korrelációval

Definíció: Legyenek X és Y valószínúségi változók. Ekkor

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\mathbb{D}(X) \mathbb{D}(Y)}
$$

ami egy -1 és +1 közti szám (ha létezik).
Kérdés: felírható a lineáris regresszió korrelációval (egyszerűen)?
Válasz: A regressziós együtthatók éppen azok, amikre teljesül, hogy

$$
\frac{(\beta X+\alpha)-\mathbb{E}(Y)}{\mathbb{D}(Y)}=\frac{X-\mathbb{E}(X)}{\mathbb{D}(X)} \cdot \operatorname{corr}(X, Y)
$$

Lineáris regresszió, bizonyítás

Biz.: Amit minimalizálnunk kell:

$$
\begin{aligned}
& h(\alpha, \beta)=\mathbb{E}\left((Y-(\beta X+\alpha))^{2}\right) \\
& \quad=\mathbb{E}\left(Y^{2}+\beta^{2} X^{2}+\alpha^{2}-2 \beta X Y-2 \alpha Y+2 \alpha \beta X\right) \\
& \quad=\mathbb{E}\left(Y^{2}\right)+\beta^{2} \mathbb{E}\left(X^{2}\right)+\alpha^{2}-2 \beta \mathbb{E}(X Y)-2 \alpha \mathbb{E}(Y)+2 \alpha \beta \mathbb{E}(X)
\end{aligned}
$$

Deriválással kereshető a minimumhelye:
α szerint: $2 \alpha-2 \mathbb{E}(Y)+2 \beta \mathbb{E}(X)$
β szerint: $2 \beta \mathbb{E}\left(X^{2}\right)-2 \mathbb{E}(X Y)+2 \alpha \mathbb{E}(X)$

Lineáris regresszió, bizonyítás

Biz. (folyt.): A parciális deriváltak pontosan akkor nullák, ha

$$
\begin{aligned}
\alpha+\beta \mathbb{E}(X) & =\mathbb{E}(Y) \\
\alpha \mathbb{E}(X)+\beta \mathbb{E}\left(X^{2}\right) & =\mathbb{E}(X Y)
\end{aligned}
$$

Ennek a megoldása:

$$
\begin{aligned}
& \alpha=\mathbb{E}(Y)-\beta \mathbb{E}(X)=\mathbb{E}(Y)-\frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)} \mathbb{E}(X) \\
& \beta=\frac{\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)}{\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}}=\frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)}
\end{aligned}
$$

Lineáris regresszió hibája

Állítás: Legyen az Y val. változó X-re vett lineáris regressziója $\beta X+\alpha$.
Ekkor

$$
\mathbb{D}^{2}(Y-(\beta X+\alpha))=\mathbb{D}^{2}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\mathbb{D}^{2}(X)}
$$

Megj.: Korrelációval felírva

$$
\mathbb{D}^{2}(Y-(\beta X+\alpha))=\mathbb{D}^{2}(Y) \cdot\left(1-\operatorname{corr}(X, Y)^{2}\right)
$$

Lineáris regresszió hibája, példa

Példa: az előző.

$$
\begin{aligned}
\mathbb{D}^{2}(Y-(\beta X+\alpha)) & =\mathbb{D}^{2}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\mathbb{D}^{2}(X)} \\
& =\frac{58}{225}-\frac{(1 / 225)^{2}}{7 / 90} \approx 0,2575
\end{aligned}
$$

Lineáris regresszió hibája, biz.

Biz:: $\mathbb{D}^{2}(Y-(\beta X+\alpha))=$
$=\mathbb{D}^{2}(Y-\beta X)$
$=\mathbb{D}^{2}(Y)+\beta^{2} \mathbb{D}^{2}(X)-2 \operatorname{cov}(Y, \beta X)$
$=\mathbb{D}^{2}(Y)+\frac{\operatorname{cov}(X, Y)^{2}}{\left(\mathbb{D}^{2}(X)\right)^{2}} \mathbb{D}^{2}(X)-2 \frac{\operatorname{cov}(X, Y)}{\mathbb{D}^{2}(X)} \operatorname{cov}(Y, X)$
$=\mathbb{D}^{2}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\mathbb{D}^{2}(X)}$

További olvasnivaló

- Devore, Berk - Modern mathematical statistics with applications, Ch. 12.1.
- James, Witten, Hastie, Tibshirani - An introduction to statistical learning, Ch. 3.

- Simpson's paradox
- Anscombe's quartet

Köszönöm a figyelmet!

