
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Model-based System Design -
Overview

Bergmann Gábor

bergmann@mit.bme.hu

Model-based System Design outline

• Requirement analysis

• Domain modeling and constraints

• Behavioral modeling

• Development process

Modeling

• Domain specific languages

• Model queries

• Code generators

• Model transformations

Domain-Specific
Languages and

Techniques

Eclipse-based
Technologies

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it on www.amazon.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com

Motivations for MDSD

Development Process for Critical Systems
Unique Development Process

(Traditional V-Model)

Critical Systems Design

 requires a certification process

 to develop justified evidence

 that the system is free of flaws

Software Tool Qualification

 obtain certification credit

 for a software tool

 used in critical system design

Qualified Tool Certified Output

DO-178C
IEC 61508

Innovative Tool Better System

Model-Driven Engineering of Critical Systems

Traditional V-Model Model-Driven Engineering

Main ideas of MDE
• early validation of system models
• automatic source code generation
 quality++ tools ++ development cost--

• DO-178B/C: Software Considerations in Airborne Systems and
Equipment Certification (RTCA, EUROCAE)
• Steven P. Miller: Certification Issues in Model Based Development
(Rockwell Collins)

Models and Transformations in Critical Systems

System Design
Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Model Transformations
• systematic foundation of
 knowledge transfer:
 theoretical resultstools
• bridge / integrate
 existing languages&tools

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases,
Monitors, Fault Trees, etc.)

Code
Generation

Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System V&V
Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Related projects
• CESAR, SAVI, …
• HIDE, DECOS, DIANA,
MOGENTES, CERTIMOT,
GENESYS, SENSORIA

MDSD principles

Languages and Models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Models
What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection

of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an

original with respect to some purpose

Model

represents System

Purposes:

• descriptive purposes

• prescriptive purposes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Model Engineering basic architecture

Model

Artifacts

(e.g. code)

Modeling

language

Platform

Meta-

modeling

language

Transformation

definition

Transformation

language

uses

defined using

defined by

Application domain Application Meta-Level

Transformation /

Code generation

Abstraction (bottom-up)
Reuse

Construction (top-down)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Languages

Domain-Specific Languages (DSLs): languages that are

designed specifically for a certain domain or context

DSLs have been largely used in computer science.

Examples: HTML, Logo, VHDL, Mathematica, SQL

General Purpose Modeling Languages (GPMLs, GMLs,

or GPLs): languages that can be applied to any sector or

domain for (software) modeling purposes

 The typical examples are: UML, Petri-nets, or state

machines

Domain Specific Modeling Languages
Concrete syntax

(Graphical/Textual)

Code
generation

View

Well-formedness
constraints

Behavioural semantics,
Simulation

Abstract syntax
(Metamodel)

Mapping

Source Code
(Documentation,

Configuration file)

Foundations of many modern tools
 (design, analysis, V&V)
• Domains: avionics, automotive,
 business modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types of models

 Static models: Focus on the static aspects of the system in

terms of managed data and of structural shape and

architecture of the system.

Dynamic models: Emphasize the dynamic behavior of the

system by showing the execution

 Just think about UML!
Usage / Purpose:
• Traceability Models:
• Execution Trace Models
• Analysis Models
• Simulation Models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodeling

 To represent the models

themselves as “instances” of

some more abstract models.

 Metamodel = yet another

abstraction, highlighting

properties of the model itself

 Metamodels can be used for:

 defining new languages

 defining new properties or

features of existing information

(metadata)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

Drawing vs. modeling

MDSD principles

Model Transformations

Some Well-known MDSE Concepts

Model Code

Code generation

Refactoring

Model
Refactoring

Re-engineering

Program comprehension

Query
Model
Query

Generative programming

A Classification of Transformations

Model Code
M2T: Model-to-Text

T2M:
Text-to-
Model

M2M: Model-to-Model T2T: Text-to-Text

Model Transformation Overview: Metamodels

Modeling tool

Source
model

Source
metamodel

Target
model

Target
metamodel

MT rule

Metamodel: Precise spec of a
modeling language

Modeling tool

Model Transformation Overview: Models

Source
model

Source
metamodel

Target
model

Target
metamodel

MT rule

Model: Description
of a concrete system

t1:Transition

t2:Transition

p1:Place p2:Place

a1:PTArc a2:TPArc

a4:TPArc a3:PTArc

tk:Token

Eclipse Modeling Framework (EMF):
• De facto modeling standard for
 Eclipse based modeling tools
• Design metamodel auto-generate
 interface, implementation, tree editor…
• Examples:
 UML, AADL, SysML, BPMN, AUTOSAR
 >30 in a single IBM tool

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Consequences or Preconditions

 Modified development process
 Two levels of development – application and infrastructure

 Infrastructure development involves modeling language, platform (e.g.
framework) and transformation definition

 Application development only involves modeling – efficient reuse of the
infrastructure(s)

 Strongly simplified application development
 Automatic code generation replaces programmer

 Working on the code level (implementation, testing, maintenance) becomes
unnecessary

 Under which conditions is this realistic … or just futuristic?

 New development tools
 Tools for language definition, in particular meta modeling

 Editor and engine for model transformations

 Customizable tools like model editors, repositories, simulation,
verification, and testing tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MD* Jungle of Acronyms

 Model-Driven Development (MDD) is a development paradigm that
uses models as the primary artifact of the development process.

 Model-Driven Architecture (MDA) is the particular vision of MDD
proposed by the Object Management Group (OMG)

 Model-Driven Engineering (MDE) is a superset of MDD because it
goes beyond of the pure development

 Model-Based Engineering (or “model-based development”) (MBE) is a
softer version of ME, where models do not “drive” the process.

MDA =

Model-Driven Architecture

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MDA Approach
Goals

 Interoperability through Platform Independent Models
 Standardization initiative of the Object Management Group (OMG), based

on OMG Standards, particularly UML

 Counterpart to CORBA on the modeling level: interoperability between
different platforms

 Applications which can be installed on different platforms portability, no
problems with changing technologies, integration of different platforms,
etc.

 Modifications to the basic architecture
 Segmentation of the model level

 Platform Independent Models (PIM): valid for a set of (similar) platforms

 Platform Specific Models (PSM): special adjustments for one specific
platform

 Requires model-to-model transformation (PIM-PSM; compare QVT) and
model-to-code transformation (PSM-Code)

 Platform development is not taken into consideration – in general industry
standards like J2EE, .NET, CORBA are considered as platforms

[www.omg.org/mda/]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Levels
CIM, PIM, PSM

Computation independent (CIM): describe requirements

and needs at a very abstract level, without any reference to

implementation aspects (e.g., description of user

requirements or business objectives);

 Platform independent (PIM): define the behavior of the

systems in terms of stored data and performed algorithms,

without any technical or technological details;

 Platform-specific (PSM): define all the technological

aspects in detail.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Computation Independent Model (CIM)

 E.g., business process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Independent Model (PIM)

 specification of
structure and behaviour
of a system, abstracted
from technologicical
details

 Using the UML(optional)

 Abstraction of structure and behaviour of a system with the PIM
simplifies the following:

 Validation for correctness of the model

 Create implementations on different platforms

 Tool support during implementation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Specific Model (PSM)

 Specifies how the functionality described

 in the PIM is realized on a certain platform

Using a UML-Profile for the

 selected platform, e.g., EJB

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Base Level: UML

Platform-Independent

Model of Business

Functionality & Behavior

Automated

Transformation

Intermediate Level UML

Platform-Specific

Model|s| on

selected platforms

generated from PIM

Implementation

generated from PSMs

Modeling in a technology-

independent UML profile allows

a precise representation

of business process/rules

Executed by MDA tool which

follows OMG standard mappings.

Resulting PSM may need some

hand adjustments based

on infrastructure decisions

Modeled in a technology-

specific UML profile.

Represents every aspect of a

coded application, but still as a model

Executed by MDA tool.

Many tools on the market

execute this step very well today

Generated code and auxiliary files

ready for compilation, linking

with legacy or other code, and deployment

Automated

Transformation

The MDA Approach
MDA development cycle

?

?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA Reverse Engineering / Roundtrip Engineering

 Re-integration onto

new platforms via

Reverse Engineering

of an existing

application into a

PIM und subsequent

code generation

 MDA tools for

Reverse Engineering

automate the model

construction from

existing code

Legacy

App

COTS

App

Other

Other

Model

Reverse-engineer

existing application

into a model and

redeploy
PIM (UML)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Excursus: OMG Standards

 CORBA - Common Object Request Broker Architecture

 Language- and platform-neutral interoperability standard (similar to
WSDL, SOAP and UDDI)

 UML - Unified Modeling Language

 Standardized modeling language, industry standard

 CWM - Common Warehouse Metamodel

 Integrated modeling language for Data Warehouses

 MOF – Meta Object Facility

 A standard for metamodels and model repositories

 XMI - XML Metadata Interchange

 XML-based exchange of models

 QVT – Queries/Views/Transformations

 Standard language for Model-to-Model transformations

Summary

 MDSE = Models + Languages + Transformations

 Motivation

o Early validation of design

o Automated generation of design artifacts

o + Interoperability, Productivity, Abstraction, Reuse

 MDA = Model Driven Architecture

o 3 modeling levels: CIM + PlM + PSM

o Automated transformations: PIM PSM Code (?)

History of MD*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Overview

Considered Approaches
 Computer Aided Software Engineering (CASE)

 Executable UML

 Model Driven Architecture (MDA)

 Architecture Centric Model Driven Software Development (AC-MDSD)

 MetaCASE

 Software Factories

Distinguishing features
 Special objectives and fields of application

 Restrictions or extensions of the basic architecture

 Concrete procedures

 Specific technologies, languages, tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Executable UML

 “CASE with UML”
 UML-Subset: Class Diagram, State Machine, Package/Component

Diagram, as well as

 UML Action Semantic Language (ASL) as programming language

 Niche product
 Several specialized vendors like Kennedy/Carter

 Mainly used for the development of Embedded Systems

 One part of the basic architecture implemented
 Modeling language is predetermined (xUML)

 Transformation definitions can be adapted or can be established by the
user (via ASL)

 Advantages compared to trad. CASE tools
 Standardized modeling language based on the UML

 Disadvantages compared to trad. CASE tools
 Limited extent of the modeling language

[S.J. Mellor, M.J. Balcer: Executable UML: a foundation for model-driven architecture. Addison-Wesley, 2002]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA with UML

 Problems when using UML as PIM/PSM
 Method bodies?

 Incomplete diagrams, e.g. missing attributes

 Inconsistent diagrams

 For the usage of the UML in Model Engineering special guidelines have
to be defined and adhered to

 Different requirements to code generation
 get/set methods

 Serialization or persistence of an object

 Security features, e.g. Java Security Policy

 Using adaptable code generators or PIM-to-PSM transformations

 Expressiveness of the UML
 UML is mainly suitable for “generic” software platforms like Java, EJB,

.NET

 Lack of support for user interfaces, code, etc.

 MDA tools often use proprietary extensions

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA

Many UML tools are expanded to MDA tools
 UML profiles and code generators

 Stage of development partly still similar to CASE: proprietary UML
profiles and transformations, limited adaptability

Advantages of MDA
 Standardization of the Meta-Level

 Separation of platform independent and platform specific models
(reuse)

Disadvantages of MDA
 No special support for the development of the execution platform and

the modeling language

 Modeling language practically limited to UML with profiles

 Therefore limited code generation (typically no method bodies, user
interface)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
AC-MDSD

 Efficient reuse of architectures

 Special attention to the efficient reuse of infrastructures/frameworks (= architectures) for a

series of applications

 Specific procedure model

 Development of a reference application

 Analysis in individual code, schematically recurring code and generic code (equal for all applications)

 Extraction of the required modeling concepts and definition of the modeling language, transformations and

platform

 Software support (www.openarchitectureware.org)

 Basic architecture almost completely covered

 When using UML profiles there is the problem of the method bodies

 The recommended procedure is to rework these method bodies not in the model but in the

generated code

 Advantages compared to MDA

 Support for platform- and modeling language development

 Disadvantages compared to MDA

 Platform independence and/or portability not considered

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MetaCASE/MetaEdit+

 Free configurable CASE
 Meta modeling for the development of domain-specific modeling

languages (DSLs)

 The focus is on the ideal support of the application area, e.g. mobile-
phone application, traffic light pre-emption, digital clock – Intentional
Programming

 Procedural method driven by the DSL development

 Support in particular for the modeling level
 Strong Support for meta modeling, e.g. graphical editors

 Platform development not assisted specifically, the usage of components
and frameworks is recommended

 Advantages
 Domain-specific languages

 Disadvantages
 Tool support only focuses on graphical modeling

[www.metacase.com]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Software Factories

 Series production of software products
 Combines the ideas of different approaches (MDA, AC-MDSD,

MetaCASE/DSLs) as well as popular SWD-technologies (patterns,
components, frameworks)

 Objective is the automatically processed development of software
product series, i.e., a series of applications with the same application
area and the same infrastructure

 The SW-Factory as a marketable product

 Support of the complete basic architecture
 Refinements in particular on the realization level, e.g. deployment

 Advantages
 Comprehensive approach

 Disadvantages
 Approach not clearly delimited (similar MDA)

 Only little tool support

[J. Greenfield, K. Short: Software Factories. Wiley, 2004]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Eclipse and EMF

 Eclipse Modeling Framework

 Full support for metamodeling and language design

 Fully MD (vs. programming-based tools)

Used in this course!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the last century

Critical Statements of Software Developers

 »When it comes down to it, the real point of software
development is cutting code«

 »Diagrams are, after all, just pretty pictures«

 »No user is going to thank you for pretty pictures;
 what a user wants is software that executes«

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the new millennium – Much has changed!

 »When it comes down to it, the real point of software development is cutting
code«
 To model or to program, that is not the question!

 Instead: Talk about the right abstraction level

 »Diagrams are, after all, just pretty pictures«
 Models are not just notation!

 Instead: Models have a well-defined syntax in terms of metamodels

 »No user is going to thank you for pretty pictures;
 what a user wants is software that executes«
 Models and code are not competitors!

 Instead: Bridge the gap between design and implementation by model transformations

 What about the managers?

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
 (revisited in 2009)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MDSE PRINCIPLES

Chapter #2

