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Szamitogépes grafika

szamok

Virtualis vilag

képszintézis

pixelek: Analégia:
* piros * 3D: optika ,
. z6ld * 2D: kockas fiizetbe
« kék rajzolas
* sth.

In computer graphics we render virtual worlds by taking a photo of them and
presenting their image to the user. The virtual world is stored in the computer
memory. The virtual world model can be the result of an interactive modeling
process, simulation, measurement, etc.

Rendering can be regarded as an abstract mapping from the virtual world
model to the intensity and color values of the computer screen. There are
infinite number of possibilities to define this mapping. If we wish to have
images that look like real images, we should simulate the image creation
process or the real world. For example, we can simulate light transport, i.e.
optics, or manual drawing.



2D képszintézis analogia: rajzolas
Modell
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2D vilag koordinata
rendszer: Egység!!!

Let us look at the details when the virtual world is two dimensional, so objects
are in a plane. A convenient reference system is a Cartesian coordinate system
with an origin, two axes and also a unit. Using these every point of the plane
can be specified by two numbers defining the distance traveled along the two
axes and measured with respect to the unit.

With pairs of numbers, points can be defined, which can form primitives by
adding topology information. For example, we can say that these three points
define a triangle. Primitives are given material properties, which usually
include the color.



3D képszintézis analogia: optika

Tone pixel Virtualis vilag
mapping

If we want to create photo like images, we should simulate the light transport
and provide the user with the illusion that he watches the real world and not a
computer screen.

If we could guarantee that the human eye gets the same photons (i.e. the same
number and of the same frequency) from the solid angle subtended by a pixel
as the eye got from the real world, then it would not be possible for the user to
distinguish between the computer monitor and the real world since the same
photons result in similar color impressions. So in computer graphics, we
should compute the number and frequency of photons, i.e. the power spectrum
of the light that would enter the eye from the solid angle of each pixel. Then
the display should be controlled to emit similar photons. Fortunately, we do
not have to emit exactly the same spectrum since the human eye is very bad in
measuring a spectrum. In fact, the illusion of most of the spectra can be
provided by carefully selected red, green and blue intensities. So having
calculated the spectrum, we convert it to an equivalent red/green/blue
intensity triplet and get the monitor to emit it.

The calculation of the light spectrum requires the solution of the photon
transfer or the transfer of electromagnetic waves. The equations describing
these phenomena are the Maxwell equations, so in fact, graphics should solve



these fundamental equations to obtain the image.



Optika:Fotorealisztikus képszintézis
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The results of the simulation of optics laws or Maxwell equations are indeed
like real photos.



Optikai analdgia
vizualizacidoban

Optikai paraméterek nem optikai jellemzdket
kddolnak: lathatatlant lathatova

v

The simulation of optics is useful even if the original data is not directly
related to optical parameters. However, we can establish a correspondence
between non-optical properties, like density or the extinction of X-ray etc, and
hypothetical optical properties like opacity, transparency, color etc. Having
established this relationship, we can photograph the scene and present the
image which visualizes the data for us.



Illusztrativ
képszintézis

(&

However, in computer graphics it is not obligatory to use only the optics
model. Instead, we can simulate the artistic process, like drawing, painting,
hatching etc. We can also take other analogies. For example, the lower left
image is a flow visualization obtained with the line integral convolution
algorithm. This algorithm simulates the process of putting confetti into the
flow and photographing it keeping the shutter open for a longer time. The
confetties are blurred into the direction of the velocity field of the flow.

Such analogies are essential when there is no direct method for visualizing the
data, for example, when it is higher than three dimensional. The right upper
image is made with the parallel coordinates method, which displays a seven-
dimensional data set. Each dimension is given a vertical line and a point is
then a polyline connecting its coordinates on each vertical line.
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e Nagy modell(giga/terabyte)
e Valds idG: par nsec/pixel




Tematika

Analitikus geometria ismétlés

Modellezés: gorbék, feltletek

Transzformacidok, homogén koordinatak

2D képszintézis, freeglut+OpenGL 3

3D képszintézis fizikai alapjai

Sugarkovetés

Inkrementalis képszintézis, freeglut+OpenGL+GLSL
GPGPU: CUDA

Animacio, Jaték




Miért ezt a ...-ot tanuljuk,
es miért nem ...-ot?

3D grafikus rendszerek: JavaScript, WebGL, DirectCompute, OpenCL
Grafikus jatékok fejlesztése: pirect3ap/HLsL

Vizualizacio és képszintézis: Renderman, vray, Nuke
Jatékfejlesztés: lender, GIMP, PhysX, Bullet, Ogre3D, Unity3D
GPGPU targyak: cupa, opencL

3D szamitogépes geometria és alakzatrekonstrukcio:

Blender, ParaView, Sketches
Képfeldolgozas: opencv

Virtuadlis és kiterjesztett valésagrendszerek:
OpenCV, OpenGL ES + Android




Analitikus geometria
gyorstalpalo

Szirmay-Kalos Laszlo




Geometriak

+ Két pont meghataroz egy egyenest.
* Egy egyenesnek van legalabb két pontja.
» Ha a egy egyenes, A pedig egy, nem az
= : egyenesen lévo pont, akkor egyetlen olyan
Geo m’etlrla egyenes létezik, amely atmegy A-n és nem
— Axiomak metszi a-t.
* Alapigazsag (tapasztalat)
* Alapfogalmak implicit definicioja
— Definiciok es tételek
— Célok és eszkozok

* Fontos geometriak a szamitogépes grafikaban
Euklideszi (sik/tér, metrikus)

— Projektiv

Fraktalis

Computer graphics works with shapes. The field of mathematics that describes
shapes is the geometry, so geometry is essential in computer graphics.

Geometry, like other fields of formal science, has axioms that are based on
experience and cannot be argued but are accepted as true statements without
arguments. From axioms other true statements, called theorems, can be deducted
with logic reasoning.

For example, axioms of the Euclidean geometry include the following three
postulates. Axioms have two purposes, on the one hand, they are accepted as true
statements. On the other hand, axioms implicitly define basic concepts like
points, lines etc. because they postulate their properties.

Based on the axioms and the applied tools, there are several different geometries
that are different models of the world. Everybody knows the Euclidean geometry
of the plane and of the space. We know that it is metric, i.e. we can talk of the
distance between objects and size is an important concept in it. In Euclidean
geometry parallel lines do not intersect, that is, a point at infinity is not part of the
Euclidean plane.

However, if we define axioms differently, we can add points at infinity to the
plane making all lines, even parallel lines, intersecting. Clearly, this is a different
geometry with different axioms and theorems, which is called the projective
geometry. Projective geometry is not metric since distance cannot be defined in




it. The reason is that the distance from points at infinity is infinite, but infinite is not a
number.

In Euclidean geometry size is an important issue, curves are measured by their length,
surfaces by their area, and solids by their volume. However, when we try to apply these
concepts to natural phenomena, like a snow crystal or a cloud, we fail. We have to realize
that natural objects do not have a precise size, so Euclidean geometry is not appropriate
for their description. For natural phenomena, we use fractal geometry.



Mindent szammal: analitikus geometria

* Két pont hatdroz egy egyenest.

nesnek van legalabb két pontja.
egyenes, A pedig egy, nem az
ev0 pont, akkor egyetle
egyenes létezik, amely atmegy A°n és nem
metszi a-t.

axiomak

pont

sik

egyenes megfeleltetés

egyenlet

metszi

illeszkedik fliggvény

geometria algebra

In computer graphics, we should also take into account that a computer is
programmed, which cannot do anything else but calculations with numbers. A
computer is definitely not able to understand abstract concepts like point, line etc.

So for the application of a computer, geometric concepts must be translated to
numbers, calculation and algebra.

A geometry based on algebra, equations and numbers is called analytic geometry
or coordinate geometry. To establish an analytic version of a geometry, we have

to find correspondences between geometric concepts and concepts of algebra in a
way that axioms of the geometry will not contradict to the concepts of algebra. If

it is done, we can forget the original axioms and work only with numbers and
equations.



Pontok definicidja
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Szamokkal!

1. Koordinatarendszer (=referencia geometria)
2. Koordinatak(=meéreés)

The goal is the definition of points with numbers and primitives with equations or
functions.

The definition of points with numbers requires a coordinate system and then the
measuring of the point with respect to this coordinate system. A Cartesian

coordinate system contains two orthogonal lines or axes, and a unit on them, and
we measure how far we should walk along them to arrive at the identified point.

A 2D polar coordinate system is a half line, and a point is defined by an angle and
a distance. The angle specifies the direction in which we should go from the
origin and the distance is interpreted between the origin and the identified point.
Note that while we require that all points can be expressed by coordinates, this is
not necessarily unambiguous, i.e. in a polar system the origin can be defined with
arbitrary angle and with distance zero.

In computer graphics barycentric coordinate systems are also popular. Here, the
coordinate system is a set of points (at least 3 in 2D) where we put weights. The
resulting mechanical system has a center of mass somewhere, which are
identified by the numbers of the weights. Barycentric coordinates are often
called homogeneous, due to the property that if we multiply all weights with the
same non-zero scalar, then the center of mass is not affected.




However, for such constructions we have already applied many non-trivial concepts like
vectors, distance, angles. First, let us start from scratch and revisit these basic building
blocks.



Pontok kombinalasa
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® r azry,r,y,..., r,pontok kombinacidja

Sulyok a baricentrikus koordinatak
e Ha a sulyok nem negativak: konvex kombinacid

Konvex kombinacié a konvex burkon beliil van
e Egyenes (szakasz) = két pont (konvex) kombinacidja
Sik (haromszog) = harom pont (konvex) kombinacidja

Defining a point as the center of mass of a system where masses placed at finite
number of reference points is also called the combination of these points with
barycentric coordinates equal to the weights.

Note that we can do this in real life without mathematics and coordinate systems,
center mass exists and is real without mathematics and abstraction.

If all weights are non-negative, which has direct physical meaning, then we talk
of convex combination since the points that can be defined in this way are in the
convex hull of the reference points. By definition, the convex hull is the minimal
set of points that is convex and includes the original reference points. For
example, when presents are wrapped, the wrapping paper is on the convex hull of
the presents.

Using the term combination or convex combination, we can define a line as a
combination of two points and a line segment as a convex combination of two
points. Similarly, the convex combination of three not collinear points is the
triangle, the convex combination of four points not being in the same plane is a
tetrahedron.




Vektor

* Vektor = eltolas: v =

* Irany és hossz (|v|)

* Helyvektor HEERIa
DE vektor # pont !!! origd

Vektor 6sszeadas
v = v, + v, (kommutativ, asszoc.)
v, =v-v, (van inverz)

Skalazas (skalarral szorzas)
v, =av (disztributiv) e

In addition to combining points, we can also translate them. By definition a
translation is a vector, which has direction and length. The length is denoted by
the absolute value of the vector.

If we select a special reference point, called the origin, then every point has a
unique vector that translates the origin to here, or from the other point of view,
every vector unambiguously defines a point that is reached if the origin is
translated by this vector. Such vectors are called position vectors. The fact that
there is a one-to-one correspondence between points and position vectors does
not mean that points and vectors would be identical objects (wife and husband are
also strongly related and unambiguously identify each other, but are still different
objects with specific operations).

Concerning vector operations, we can talk of addition that means the execution
of the two translations one after the other. The resulting translation is independent
of the order, so vector addition is commutative (parallelogram rule). If we have
more than two vectors, parentheses can rearranged so it is also associative.
Vector addition has an inverse, because we can ask which vector completes the
translation of v2 to get a resulting translation v.

Vectors can be multiplied by a scalar, which scales the length but does not




modify the direction. Scaling is distributive, i.e. scaling a sum of two vectors results in
the same vector as adding up the two scaled versions.

We have to emphasize that the nice properties of commutativity, associativity, and
distributivity are usually not evident and sometimes not even true for vector operations.
Be careful!



Skalar (dot, belsd) szorzat

* Definicio V2
vl-v2 = |v1]-|v2|-cosa >
2 «—>
* Jelentés v1|-cosor
Egyik vektor vetlilete a masikra * masik hossza
* Tulajdonsag 3
Nem asszociativ!!! :
Kommutativ
vl-v2 =v2-vl
Disztributiv az 6sszeadassal : > v3
v3:(v2+vl) = v3-v2 + v3-vl € »
[v1|-cosa
v-v = |v|?

Két vektor merdleges ha a skalarszorzatuk zérus

Vectors can be multiplied in different ways. The first possibility is the scalar
product (aka dot or inner product) that assigns a scalar to two vectors. By
definition, the resulting scalar is equal to the product of the lengths of the two
vectors and the cosine of the angle between them.

The geometric meaning of scalar product is the length of projection of one vector
onto the other, multiplied by the lengths of the others.

Scalar product is commutative (symmetric), which is obvious from the
definition.

Scalar product is distributive with the vector addition, which can be proven by
looking at the geometric interpretation. Projection is obviously distributive (the
projection of the sum of two vectors is the same as the sum of the two
projections.

Scalar product is NOT associative!

There is a direct relationship between dot product and the absolute value. The
scalar product of a vector with itself is equal to the square of its length according
to the definition since cos(0)=1.




Vektor (kereszt) szorzat

o Definicié vixvz

[Vl x v2| = |v1|-[v2|-sina

Merdleges, jobb kéz szabaly H
e Jelentés

Teriilet és merdleges vektor,

(Egyik vektor vetllete a masikra meréleges sikra + 90 fokos
elforgatas) * masik hossza V2

e Tulajdonsagok vl
Nem asszociativ!!! .
Antiszimmetrikus [v1]: sma

vixv2=-v2 xvl 90 fok

Disztributiv az 6sszeadassal
v3 x(v2+vl)=v3 xv2 +v3 x vl

Két vektor parhuzamos ha vektorszorzatuk zérus.

Vectors can be multiplied with the rules of the vector (aka cross) product as
well. The result is a vector of length equal to the product of the lengths of the two
vectors and the sine of their angle. The resulting vector is perpendicular to both
operands and points into the direction of the middle finger of our right hand if our
thumb points into the direction of the first operand and our index finger into the
direction of the second operand (right hand rule).

Cross product can be given two different geometric interpretations. The first is a
vector meeting the requirements of the right hand rule and of length equal to the
area of the parallelogram of edge vectors of the two operands.

The second geometric interpretation is the projection of the second vector onto
the plane perpendicular to the first vector, rotating the projection by 90 degrees
around the first vector, and finally scaling the result with the length of the first
vector.

Cross product is NOT commutative but anti-symmetric or alternating, which
means that exchanging the two operands the result is multiplied by -1.

Cross product is distributive with the addition, which can be proven by
considering its second geometric interpretation. Projection onto a plane is




distributive with addition, so are rotation and scaling. Cross product is NOT associative.



Descartes koordinata rendszer

* Egyértelml(x =v-i,y =vj) yj v =xi+yj
* Operacidk koordinatakban

Osszeadas: J

vt vy =0t () . By
ik 5

Skalar szorzat: e

Vi =it ) - (ol +yy)) = (g x+ y )

Vektor szorzat: i j k

Vi x v =ity j+z2k) x (i + y, f + 2k) = X1 Y12

(1z=yaz) I+ 0z —xi2)j H o=y |y, 2,

Hossz:
V| =Vvy=vVxi+)2+22

Having vectors and operations, we are ready to establish a Cartesian coordinate
system. Let us select one point of the plane and two unit (length) vectors i and j
that are perpendicular to each other. A vector has unit length if its scalar product
with itself is 1 and two vectors are perpendicular if their scalar product is zero
since cos(90)=0 (formally:i -i =j -j=1and i -j=0).

Now, any position vector v can be unambiguously given as a linear combination
of basis vector i and j, i.e. in the form v = xi + yj, where x and y are scalars, called
the coordinates. Having v, scalar products determine the appropriate
coordinates: x = v-i, y = v-j . To prove this, let us multiply both sides of v =xi +
yj byi andj.

As there is a one-to-one correspondence between vectors and coordinate pairs in
2D (and coordinate triplets in 3D), vectors can be represented by coordinates in
all operations.

Based on the associative property of vector addition and on distributive property
of multiplying a vector by a scalar with addition, we can prove that coordinates of
the sum of two vectors are the sums of the respective coordinates of the two
vectors.




Similarly, based on the distributive property of dot product with vector addition, we can
prove that the dot product equals to the sum of the products of respective coordinates.
Here we also exploit that i -i =j-j=1 and i -j= 0.

Finally, based on the distributive property of the cross product with vector addition, we
can also express the cross product of two vector with their coordinates. We should also use
the cross products of the base vectors i xi =0, i xj=k, etc. The result can be memorized as
a determinant where the first row contains the three basis vectors, the second the
coordinates of the first operand, the third the coordinates of the second operand.

The absolute value of a vector is the square root of the scalar product of the vector with
itself. Note that we get the Pythagoras theorem for free.



struct vecs ( Vector/Point/Color class

float x, y, z;
vec3(float x0, float y0, float 2z0) { x = x0; y =y0; z = z20; }
vec3 operator* (float a) { return vec3(x * a, y * a, z * a); }

vec3 operator+(const vec3& v) {

return vec3(x + v.x, y + v.y, z + v.z);
}
vec3 operator-(const vec3& v) {

return vec3(x - v.X, y - V.Y, 2 - Vv.2);
}
vec3 operator* (const vec3& v) {

return vec3(x * v.x, y * v.y, z * v.z);
}
float Length() { return sqrtf(x * x + y *y + 2z * z); }

}i

float dot(const vec3& vl, const vec3& v2) {
return (vl.x * v2.x + vli.y * v2.y + vl.z * v2.2);

}

vec3 cross(const vec3& vl, const vec3& v2) {
return vec3(vl.y * v2.z - vli.z * v2.y,
vi.z * v2.x - vl.x * v2.z,
vi.x * v2.y - vl.y * v2.x);

The implementation of the theory discussed so far is a single C++ class
representing a 3D point or a vector with three Cartesian coordinates. Using
operator overloading, the discussed vector (and point) operations are also.




Egyenes (szakasz) mint két pont
kombinacioja
Fizikabol
X(ri—r)xmg=0

2 mir;

r:
ij

Paraméteres egyenlet

r(t)=ry+vt, te[-0,x0]

X(I):xl(]-t)'l' x?_t x({) — xl + vx {
y(O)=y(1-0)+ yt V() =y vt

Having points, we can start defining primitives built of infinitely many points.
We have two basic operations on points, combination and finding the vector that
translates one point to the other.

If we have a translation vector, we can ask the distance, impose requirements on
orthogonality or parallelism.

Combination uses the center of mass analogy, which assigns the center of mass to
a set of points by the given formula. The position vectors of individual points are
multiplied by the mass placed there and the sum is divided by the total mass.

Let us select two points that will be combined and, for the sake of simplicity, let
us assume that the total mass is 1 (we distribute 1 kg mass in the two points).
Distributing unit mass has the advantage that we do not have to divide with the
total mass since division by 1 can be saved.

The center of mass will be on a line segment between by the two points. Whether
it is closer to the first or to the second point depends on t, so by modifying t in
[0,1] we can make the center of mass run on the line segment. So, points of the
line segment can be expressed by a function of t. Such equation is called
parametric equation because we have a free parameter that controls which point




of the primitive is currently selected.

If t can be outside of the unit interval, then a point can also repel the point, thus the center
of mass will still be on the line of the two points but outside of the line segment. The
equation of the line segment and the line are similar, only the parameter ranges are
different. The equation can also be rewritten in another form, where the two points are
replaced by one point, called the position vector of the line, and the vector between them,
called the direction vector of the line.



2D egyenes

Implicit egyenlet

n normal vektor

X - n(r—ry)=0
v irany vektor
T (5= x0) + 1, (7 = yg) = 0
: d ax +by+c=0
x,v,1D)-(a, b c)=0

2D egyenestdl mért tavolsag:

n-(r —ry) = Vetiilet n-re * az n hossza

Ha n egységvektor:
n-(r —ry) az elgjeles tavolsag!

Having points, we can start defining primitives built of infinitely many points.

We have two basic operations on points, combination and finding the vector
that translates one point to the other. If we have a translation vector, we can
ask the distance, impose requirements on orthogonality or parallelism.

Combination uses the center of mass analogy, which assigns the center of mass to
a set of points by the given formula. The position vectors of individual points are
multiplied by the mass placed there and the sum is divided by the total mass.

Let us select two points that will be combined and, for the sake of simplicity, let
us assume that the total mass is 1 (we distribute 1 kg mass in the two points).
Distributing unit mass has the advantage that we do not have to divide with the
total mass since division by 1 can be saved.

The other way of establishing the equation of the line is based on orthogonality
(or, from another point of view, on distance). The difference vectors of any two
points on the line are all parallel, so they are all perpendicular to a given vector,
called the normal vector of the line. Let one point be a given point, called the

position vector of the line, and the other point represent any point (this is called




the running point). Their difference r-r0 is perpendicular to normal vector n if and only if
their scalar product is zero. This equation imposes a requirement on running pointr. If r
satisfies this equation, then the point is on the line, otherwise it is not on the line.

Another interpretation uses the distance. Point r is on the line if its distance from the line
is zero. We know from geometry that the distance should be measured in perpendicular
direction, which is

In-(r —ry)| if n is a unit vector (the difference is projected onto the unit normal vector).

Expressing the line equation with coordinates, we get an implicit linear equation for
unknown point coordinates x and y. If a point’s X,y coordinates satisfy this equation, the
point is on the line.

This implicit equation can also be expressed by the scalar product of two three-element
vectors if we use the convention that 2D points have three coordinates where the third
coordinate is 1.



n normal vektor

n(r—ry)=0

ny (x_x()) + n, (}F.VO) + (Z_Zo) =0
ax+by+cz+d=0

(x,y,z, 1)'(61, b, & d):()

Ha n egyscgvektor:
n-(r —ry) a siktol mért tavolsag!




KOr a sikon

Implicit egyenlet:
Azon r(x, v) pontok mértani helye, amelyek a ¢(c,, ¢,) kdzépponttdl R
tavolsagra vannak:

r—e=R = (F=cf=F © G- +tF—-gP=F

Paraméteres egyenlet:
A sin(¢) és cos(¢p) definicidja:

x(¢) = c,+ R cos(d)
/ 2)\ 0) = ¢, + R sin(9)

By definition, a circle is a set of points r of distance R (radius) from its center
point c. Translating this geometric definition to the language of analytic
geometry, we can establish the equation of the circle.

Distance of two points is the absolute value of the vector between them, which
must be equal to R. Instead of the distance, we can work with the squared
distance since both sides of this equation are positive, so taking the square does
not modify the roots. The squared distance is the dot product of the difference
vector with itself. Dot product can also be expressed with coordinates, so we can
establish an implicit equation of the circle in Cartesian coordinates.

Circle has also a famous parametric equation, which is based on the definition of
cos and sin: If we rotate a unit vector by ¢ around axis z, the x coordinate of the
rotated vector is cos(¢) and the y coordinate is sin(¢).

Rotated vector of length R can be obtained by scaling by R. If the center is not in
the origin but at point c, then we should translate the circle points by c.




Gyakorlatok

* 2D:

— A parabola implicit egyenete (azon pontok mértani helye,
amelyek egyenl6 tavolsagban vannak a p ponttél és az (r0, n)
egyenestdl),

— Az ellipszis (a p1, p2 pontoktol mért tavolsagosszeg = C)
— Koordinatatengelyekkel parhuzamos tengely( ellipszis
paraméteres egyenlete

* 3D
— GOmb, henger és paraboloid implicit egyenlete
— Két kitéré egyenes tavolsaga: (rl, v1) és (r2, v2)

— Azon pontok halmaza, amelyek p1, p2 pontoktdl mért
tavolsagnégyzet 6sszege = C.




Geometriai modellezés

Szirmay-Kalos Laszlo




Gorbeék: 1D ponthalmazok
A pontok koordinatai kielégitenek egy egyenletet:
— implicit: Ax,»)=0 Ar=0
« 2Degyenes: ax + by +¢=0 | n(r-ry))=0
o Kor: (x—x)*+(—p)—R*=0 | |jr—ry -R*=0
— parametrikus: x = x(¢), y = y(?) | r = r(?)

* 3D egyenes: X =xpt v, i
Vomimi |r=retve telwom)

)
z=zyt+ v t
e Kor:t € [0,1]

x(f) =x, + R cos 2t
() =y, + R sin 2nt
— explicit: yv=F(x)
* 2D egyenes:y =mx + b

If we want to specify 1D objects, like curves, then we should simultaneously
identify (uncountably) infinitely many points. Obviously, defining the points
one by one with their Cartesian coordinates is not an option. Instead, we
usually specify an equation that has infinitely many roots and these roots are
considered as the Cartesian coordinates of points in a set defined by the
equation. Assume that we are in 2D when the equation should contain
Cartesian coordinates x and y (in 3D there would be a third coordinate as
well). The equation can have implicit form, which means that x and y are
put into an algebraic expression that is made equal to zero. We have a single
equation with two unknowns thus, we have the hope of having infinitely
many roots, i.e. X,y pairs.

For example, a linear equation containing x and y identifies a line. A circle
contains points that are at distance R from the reference point. Expressing
this distance with the Pythagoras theorem, we can also develop and equation
for the circle.

The equation may also have parametric form, where we use a free
parameter t that can run in an appropriate interval. Substituting t into two
equations defining x and y (or z), we get the Cartesian coordinates of the
point corresponding to t.

The most obvious, but the least useful equation type is the explicit form,
where we express y as a function of x. The problem with this representation




is for each x there must be exactly one y. This is usually not the case, think of a
circle or a vertical line, for example.

For classic curves, like line, circle, parabola, ellipse, etc. we know their geometric
definition, which can be translated to an equation, so the definition means the
specification of the free parameters in the equation.



Szabadformaju gorbék
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* Definicié vezérl6pontokkal Oq) M
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e Polinom: x()=X2a;¢, y()=Z bt
* Polinom egyutthatok:

— Interpolacio

— Approximacio

However, curves we meet usually do not belong to the category of classic
curves, so we do not know their equation. These curves are free form
curves.

As “everything” can be approximated by polynomials, the unknown
equations of free form curves are also attacked this way. We approximate
their parametric equations with polynomials of parameter t. The problem is
that the polynomial coefficients do not have intuitive interpretation, thus we
cannot expect the modeler to specify the coefficients directly. Instead, we
require the user to specify a finite number of control points, and the
modeling program automatically computes the polynomial coefficients from
the control points. This computation can be an interpolation when the
resulting curve is expected to go through the control points. Or, the
computation can also be an approximation, when the resulting curve should
just somehow follow the control points, but it does not have to go through
each of them. By requiring approximation instead of interpolation, we ease
the fitting process so we can impose additional requirements concerning the
”quality” of the curve.




r r Lagrange interpolacio
oK

n

* Vezérl pontok: vy, 5, Fs,..., 1,

» Keresd: r(t) = Z [a;, b;] ' amelyre
rit)=r,rt)=r,y... ,rt,)=r,

* Megoldas:
ri)=2L(H)r, —> rt) =X L{tpr;=r,

. (I-I-) Il ﬂ.(f,_t.) 1 if i=k
Li({k)zl—;—ﬂ _
i ,-ff(tf‘l}) 0if i=k

The first curve is of interpolation type and is known as the Lagrange interpolation.
Suppose we specify a sequence of control points rl, ..., rn, and search a parametric
function r(t) (one polynomial for each of the x, y or X, y, z coordinates) that goes through
them. More precisely, we expect the curve to give control point r1 for parameter value t1,
r2 for t2, etc. The interpolation requirement means n constraints, thus the polynomials may
have n unknown coefficients to make the number of unknowns equal to the number of
equations, and thus obtaining a well defined problem with an unambiguous solution. To
find the n unknown polynomial coefficients, we need to solve a linear equation generated
by substituting t1,...,tn into the polynomial and requiring them to be equal to r1,...,rn,
respectively. If we solve it, we obtain the coefficients, which allow the computation of the
curve point for arbitrary parameter t.

Instead of solving the linear equation, the solution can be given directly as a combination of
the control points with barycentric coordinates Li(t) that depend on parameter t. The
algebraic form of these weight functions, aka basis functions or blending functions is
shown here as the ratio of two products.

To prove that the combination of the control points with these functions satisfies the
interpolation constraints, let us examine a basis function Li when we substitute tk into it. If
i=k, the numerator and the denominator of Li will be similar, so Li(ti) = 1. However, when
i 1=k, there will be some j which equals to k, so one factor of the numerator will be tk-tk=0,
making Li(tk) also zero. So Li is 1 for ti but is zero for all other discrete parameter values.
This means that in sum Li(tk) ri, all control points ri get zero weight except rk, which gets
weight 1, thus r(tk) = rk.

Note: A point of the Lagrange curve is the combination of control points with weights Li.
According to the definition of combination, the reference points (which are the control
points here) should be multiplied with the corresponding weights, the terms should be




added them up, and finally the sum be divided with the total mass. Where is this division? The
division can be ignored if the total mass is 1. Is the sum of the weight functions equal to 1 for any
t?7?? (Yes).



LagrangeCurve

class LagrangeCurve ({
vector<vec3> cps; // control points
vector<float> ts; // parameter (knot) values

float L(int i, float t) {
float Li = 1.0f;
for(int j = 0; j < cps.size(); j++)
if (3 '= i) Li *= (t - ts[3j])/(ts[i] - ts[3]);
return Li;

}
public:
void AddControlPoint (vec3 cp) {
float ti = cps.size(); // or something better
cps.push_back(cp); ts.push_back(ti);
}

vec3 r(float t) {
vec3 rr(0, 0, 0);
for(int i = 0; i < cps.size(); i++) rr += cps[i] * L(i,t);
return rr;




Lagrange interpolacio bazisfiggvényei
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Let us take an example where there are four control points and we expect
the curve to interpolate them for t=0, 0.33, 0.67, and 1, respectively. The
basis functions are depicted in the Figure. When t=0, the weight of the green
point is 1, and the weight of all other points is zero. The curve is then in the
green point. When t increases, the weight of the red point gets larger and at
t=0.33 only the red point has non-zero weight...

The basis functions oscillate between positive and negative values, thus a
control point periodically attracts or repels the curve. This is bad since the
curve will tend to oscillate.

The other disadvantage of Lagrange interpolation is that it cannot provide
local control. Local control would mean that the modification of a control
point modifies only a smaller part of the curve. However, as all basis
functions are non-zero in the whole domain, the complete curve will change.




Lagrange interpolacio problémai




Hermite interpolacio

Pir=r(t,)

: a,= P,
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Hermite (H at the beginning and e at the end are silent because he was a
Frenchman) interpolation is a generalization of Lagrange interpolation,
where not only the points to be interpolated are given but also the
derivatives. Here we discuss only the practically relevant special case, when
the curve is defined by two control points and the first derivatives at these
control points. We have four constraints, so the polynomial that is
unambiguously determined by these constraints if a cubic (of four
polynomical coefficients).

The strategy is (always) similar to that of the Lagrange interpolation. We
take the polynomial with yet unknown coefficients, substitute the
constraints, and get a linear equation for the unknown coefficients. This
linear equation is solved.




Bezier approximacio

* Keresd: r(7) = Z By(?)
— B;(?): ne oszcillaljon
— Konvex burok tulajdonsag
- By =0, ZB(n=1

Lagrange (and Hermite) interpolation tends to oscillate. Let us find a better
curve. We still use the center of mass analogy, i.e. the curve will be the
composition of control points with weights placed at them. The weights are
basis functions Bi(t) and we can ignore division with the total mass if the
sum of weights is guaranteed to be equal to 1.

We do not want the oscillation of the Lagrange curve, so we allow only non-
negative weights. Composition with non-negative weights is a convex
combination, thus all points of the curve, i.e. the complete curve will be in
the convex hull of the control points.




Bernstein polinomok

Newton féle binomialis tétel

17 = (e (1)) =2

(':')t F(1-t)r

L

B(?)

B()> 0,3 B() =1

. OK

So, the task is to find a basis function system where each basis function is
non-negative in the allowed domain (in [0,1]) and their sum is everywhere

1.

Such basis functions can be constructed by expressing 1 with the Newtonian
binomial theorem. The terms are called Bernstein polynomials, which are
indeed non-negative if tis in [0,1], and their creation guarantees that their

sum is 1.




Bezier approximacio

KO =S B(0)r,

B/(/) =(’j) i (1-£yri

If n =3 (which is good for 4 control points), the basis functions are (1-t)"3,
3*(1-t)"2*t, 3*(1-t) *t"2, t"3. Note that the first basis function is 1 for t=0,
while all others are zero, so the curve crosses the fist control points.
Similarly, when t=1, the curve is at the last control point. However, other
control points are not so lucky, they are usually not interpolated. This is an

approximation curve.



BezierCurve : .

class BezierCurve {
vector<vec3> cps;// control points

float B(int i, float t) {
int n = cps.size()-1; // n deg polynomial = n+l pts!
float choose = 1;
for(int j = 1; j <= i; j++) choose *= (float) (n-j+1)/3;
return choose * pow(t, i) * pow(l-t, n-i);

}

public:
void AddControlPoint (vec3 cp) { cps.push_back(cp); }

vec3 r(float t) {
vec3 rr(0, 0);
for(int i = 0; i < cps.size(); i++) rr += cps[i] * B(i,t):
return rr;




Catmull-Rom spline

Minden két vezérlGpont kozé egy gorbe szegmens
Simasag: a sebesseg is legyen kozos ket egymas utanira

1 [ri--‘-l“ri +"i“"i-t ]
v.=—
BN bl T Brhig

Egy gorbeszegmens: Hermite interpolacio
Legeslegelsé és legutolso sebesség explicite

Let us define a separate curve segments between every two control points
applying Hermite interpolation. Hermite interpolation needs the start and
end points (which are available) and the derivatives at these two points
(which should be found somehow).

If the speed is uniform and the motion is linear in segment i, then its
constant speed equals to (r{i}-r{i-1})/(t{i}-t{i-1}).

Similarly the constant speed in segment i+1 would be (r{i+1}-r{i})/(t{i+1}-
t{i}). A good approximation is to set the velocity at the control point shared
by the two segments to the average of these two velocities. This is the
Catmull-Rom spline.

Kochanek and Bartels further generalized this spline and allowed an
additional tension parameter that can scale up or down the average velocity.
On the other hand, we can use a weighted average when the average of the
two constant speeds is obtained.




CatmullRom

class CatmullRom ({
vector<vec3> cps; // control points
vector<float> ts; // parameter (knot) values

vec3 Hermite( vec3 p0, vec3 v0, float tO,
vec3 pl, wvec3 vl, float til,
float t ) {

}

public:
void AddControlPoint(vec3 cp, float t) { ??77?7 }
vec3 r(float t) {
for(int 1 = 0; i1 < cps.size() - 1; i++) {
if (ts[i1] <= t && t <= ts[i+l]) return Hermite(..);
}




S

The Catmull-Rom spline can be found in PowerPoint and in many drawing
packages. It is an interpolating spline with local control.

When we move a control point, the average speeds of two linear uniform
motions are modified. Thus, the averages of these linear motions are

changed at three control points, which can affect four curve segments at
most.




Feluletek

Felllet a 3D tér 2D részhalmaza:
— Koordinatak kielégitenek egy egyenletet "\”

— implicit: fix,y,2)=0
o gomb: (x -x0)2+ (¥ -y0)2+ (z-20)>-R2=0
— parametrikus: x=x(u,v),y =y(u,v),z=2z(u,v),
u,ve [0,1]
s gdmb x =x0+ R cos 2mu sin v
v =»0+ R sin 2nu sin v
z=2z0+ R cos v u,v € [0,1]

— explicit (magassagmezd):
z=h(x,p)

Surfaces are two dimensional subsets of the 3D space. Their definition is
very similar to that of curves, but now the parametric equations have two
free parameters (parametric equations of curves map a line segment onto the
curve, parametric equations of surfaces map a square onto the surface).




Hu,v) = r,(u) Torusz

x(u)=R+rcos(u)

w(u) = rsin(u)
z(u)=0

x(2,v) = x(u)cos(v) = (R +rcos(u))cos(v)
v(u,v) = y(u)=rsin(u)
z(u,v) = x(u)sin(v) = (R + rcos(u))sin(v)




Szabadformaju felilet

Definicié vezérl6pontokkal

r(uv)=X X B;(u) B(v)r;

r(u,v)=r(u) =2 B;(u) r;(v)
r(v)== B;(V) Fij

The definition of curves traced back the problem to the specification of a
few control points. We use the same approach here.

First, we trace back the definition of surfaces to curves. Let us fix one of the
free variables of the surface, which results in a one-variable parametric
form, a curve. This curve is on the surface and is called isoparametric
curve. A curve can be well defined by control points. Now let us fix the
isoparametric value differently, which leads to another isoparametric curve
that can be defined with different control points. As the isoparametric value
changes, the control points of the corresponding isoparametric curve also
change. These changes are also curves, so we can express the path of the
control point by blending other control points.

Substituting this into the equation of the isoparametric curve, we obtain the
equation of the surface, which is a combination of control points forming a
control cage or control polyhedron. The blending or weighting function of
control point rij is the product of basis functions Bi parameterized with u,
and Bj parameterized with v.




Vezérl6pontok moédositasa

Surface definition is basically the modification of control points that attract
the surface if weights are non-negative.




Poligonhald finomitasa

So far we used the following strategy. We started with the control cage or
control mesh. Using the center of mass analogy, a continuous and smooth
parametric surface is developed. However, when we render this smooth
surface, we should decompose it to small triangles since the GPU can
handle only triangles and not smooth surfaces. So the very beginning of this
process is a rough mesh and the very end is a fine mesh.

Can we get rid of the complicated mathematics of blending, splines, smooth
interpolation etc. and obtain the fine mesh directly from the rough mesh?




Subdivision gorbék
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Subdivision curves or surfaces are based exactly on this idea.

Let us consider a curve defined by a few control points. The polyline
connecting the control points is a rough approximation of the desired
smooth curve. This rough polyline is refined by subdividing it by inserting a
point at the middle of each line segment and then moving the original
vertices to the weighted average of their original location and the two
middle points.

The new polyline looks smoother. If we are not satisfied, we can repeat the
process recursively.




Catmull-Clark subdivision
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The idea can be extended to surfaces. Here only one type of subdivision
surfaces is introduced, which is called the Catmull-Clark surface. We
assume that the original mesh is built of quadrilaterals. Although the
algorithm can work with other meshes as well, after the first subdivision
step, the mesh will always be a quadrilateral mesh.

The subdivision starts by the computation of face center and edge center
points, which double the resolution but do not alter the shape yet. Then we
first move the original vertices to the weighted average of the surrounding
face centers, edge centers and of the point itself. The averaging scheme also
depends on how many faces share this point, which is called the valence of
this vertex. Having moved the original vertices, we find the final location of
the edge centers as well.



Durva poligon modell




Subdivision 1




Subdivision 2




B-rep

* Test = hatarolo feluletek

.\ 4

* Topoldgiai érvényesség (Euler tétel ha egy
darabbdl all és nincsenek benne lyukak) :

cstucsok + lapok= ¢€lek + 2

Boundary representation defines a solid by the boundary surfaces or faces.
Specifying the boundaries independently would not work since it would be
possible to create something where the boundaries do not enclose a 3D solid
or the enclosing is not watertight. We should specify edges, faces and
vertices simultaneously to always guarantee that the object is topologically
valid.

A famous equation that can be used to check topological validity is the
Euler theorem. It can be applied for 3D objects that are isomorphic to a
sphere (they turn to a sphere when pumped up). Objects with holes or
consisting of multiple independent pieces do not belong this category (they
are isomorphic to a torus or more than one sphere). The Euler equation can
be generalized to cover these cases as well, when it is called Euler-
Poincare equation.

With the Euler’s theorem, when we have an object, counting the vertices,
faces and edges allows the determination whether or not this object is valid.
However, when it turns out that it is invalid, it is usually too late. What we
need is elementary operations that keep the validity of the Euler equation
provided it was valid before the application of the operation. Such
elementary operations are called Euler operations.




Euler operatorok

Lap kihuzas

Lap felvagas ./.

El torlés
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Csucs szétvagas

A few examples of Euler operators are shown here. Face extrude extrudes a
face by automatically filling the holes between the original and extruded
face with new faces and edges. Counting the numbers of new faces (4),
edges (8) and vertices (8), we can prove that it is indeed an Euler operator.

Face split requires the user to select two edges of a fact and to specify two
points on them. These new points are connected by a new edge.

Altogether, this operation introduces 2 vertices, 3 edges (one new and two
that are obtained as the subdivision of the original edges with the new
points) and a new face (the new edge subdivides the face into two).

Edge collapse removes an edge with one of its end points. Vertex split is the
inverse of this operation.




Kezdet: érvényes téglatest

To create a space ship, we can start with a topologically valid object, e.g. a
transformed cube, then we execute a sequence of face extrusions. As face
extrude is an Euler operator, the result will automatically be a topologically
valid object.




Lap kihuzas




Lap kihuzas




Lap kihuzas




Lap kihuzas




Subdivision simitas




Transzformaciok

Szirmay-Kalos Laszlé




(x’y)=1(x,p)

(x.y) p

Transzformaciok

» Tonkre tehetik az egyenletet

* Korlatozzuk a transformacidkat és az
alakzatokat ugy, hogy invarians legyen
— Pont, egyenes (szakasz), sik (poligon)

« Affin transzformacidk

x’=apx +ay,y +as - Pirhuzamos egyenes tarté

V' =da;,x + a,y + ay, — Descartes koordinatakban linearis

Homogén linedris transzformacidk

—p Egyenest egyenesbe
Homogén koordindtakban linearis

Geometric transformations assign a point to a point, so it is a point valued
function of points.

Geometric transformation may destroy the equation and the type of an object.
Even simple scaling turns a sphere into an ellipsoid, so the equation, program,
representation will change. To avoid this, we limit the allowed transformations
and object types to those which guarantee that the object type is preserved. Linear
elements, like points, line segments, and polygons may approximate any 0,1 or 2
dimensional object.

Affine transformations that can be expressed as linear functions of the Cartesian
coordinates map lines to lines and also preserve parallel lines.

This theorem can be proved by realizing that a line can have a linear equation and
with linear equation only lines can be described. So, if a linear equation of a line
is combined with the linear function of the transformation, we get a linear
equation, which thus must be a line. If this transformation could make parallel
lines intersection or intersedted lines parallel, then this transformation would
create a point out of nothing or would make a point disappear. A linear function is
not able to do that.




Affine transformations are not the widest set of transformations preserving lines and
polygons. The widest set is homogeneous linear transformations (homogeneous
coordinates are multiplied by a matrix), which includes central projection as well.

To find this wider set of transformations, we should understand that no transformation of
the Euclidean plane can make two parallel lines intersecting, since that would create a
point from nothing. The problem is the Euclidean geometry itself and its property that
parallel lines do not intersect. To consistently discuss how lines can be transformed to
lines without keeping the parallelism, we should step out of the Euclidean geometry. The
proper geometry is the projective geometry.



Perspektiva

We can see the transformations of parallel lines to intersecting ones in every
moment of our life. The phenomenon is called perspective.



Grafika vizsgak javitasa
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Perspective of the table.



Euklideszi — Projektiv sik

» Keét pont meghataroz egy egyenest. « Két pont meghataroz egy egyenest.
* Egy egyenesnek van legalabb két pontja. * Egy egyenesnek van legalabb két pontja.
egy egyenes, A pedig egy, nem az + Két egyenes mindig egy pontban metszi
a-pont, akkor egymast,

To establish projective geometry, the axioms need to change. The parallel axiom
of the Euclidean geometry is deleted, and instead of this we postulate that ,,two
lines intersect each other in exactly one point”. As a result, the Euclidean plane
must be extended with ideal points. Each line is given one ideal point, assigning

the same ideal point to two lines if and only if they are parallel. Ideal points will
be on a line.



Homogén koordinatak (2D)
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Homogeneous coordinates are defined by extending the Cartesian coordinates by
an additional coordinate that is equal to 1, and multiplying all coordinates by an
arbitrary non-zero scalar h. An intuitive interpretation of homogeneous
coordinates in 2D is the following: we put weight Xh in point (1,0), weight Yh in
point (0,1), and w=h-Xh-Yh in the origin. Value h is the total mass distributed.
Three numbers Xh,Yh,h identify a point in 2D which is the center of mass of this
mechanical coordinate system.

Based on the constuction, it is obvious that any point of the Euclidean space,
which can be given by Cartesian coordinates, can also be represented by
homogeneous coordinates with non zero h. It is also true that any homogeneous
coordinate triple where h is not zero, can also be given by Cartesian coordinates,
which can be obtained by dividing the first two coordinates by the third.

So, if h is not zero, homogeneous coordinates can represent the same set of points
as Cartesian coordinates.




Homogén koordinatak idealis
pontokhoz: h=0

o Idedlis pont
[x,,0]

[x32:1/3]

[x.31]
[2x,2y, 1] ~ [x,,1/2]

X

Euklideszi sik+ idealis pontok = projektiv sik

Homogeneous coordinates [Xh, Yh, h] can also be interpreted in the following
way: (Xh, Yh) specify the direction of the point, and h is a scaling of the distance.

Let us consider a point of Cartesian coordinates X,y, which can be given in
homogeneous coordinates as [X,y,1].

Now, let us consider another point that is in the same direction, but twice as far as
(x,y). This farther point is (2x,2y) in Cartesian coordinates, [2x,2y,1] in
homogeneous coordinates, or [X,y,1/2] in homogeneous coordinates. Similarly,
the point that is also in the same direction but is f times farther away is [x,y,1/f].
So the interpretation of a homogeneous triplet is that the first two coordinates are
Cartesian ones and show the direction, and the third coordinate is an inverse
scaling of the distance. When f is infinity, so 1/f is zero, then we get [x,y,0],
which is at the direction of (X,y), but at infinity.

With homogeneous coordinates we can express ideal points, i.e. points at infinity
that are the intersections of parallel lines. Note that in Euclidean geometry
parallel lines do not intersect. So, when we work with homogeneous coordinates
instead of Cartesian ones, we describe the projective plane that contains the ideal
points as well, and not the Euclidean plane.




Homogén koordinatak (3D)

Teljes suly: h = X, +Y,+Z,+w
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3D points can also be represented with homogeneous coordinates, i.e. the 3D
Cartesian space can also be extended to 3D projective space. The center of mass
analogy puts weight Xh at reference point (1, 0, 0), weight Yh at (0,1,0), weight
Zh at (0,0,1), and finally w = h—Xh-Yh-Zh at the origin. Using the definition of
the center of mass, from a quadtuple of homogeneous coordinates, the
corresponding Cartesian coordinate triplet can be obtained by homogeneous
division (of course, only if h is not zero).




Egyenes a projektiv térben

egyenes = két pont kombinacidja
szakasz = két pont konvex
kombinacioja
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We shall transform not only points but lines and planes as well, so we need the
equations of lines and planes in homogeneous coordinates. We use the center of
mass analogy. A point is specified by placing X1,Y1,Z1,h1-X1-Y1-Z1 weights at
the ends of the basis vectors and the origin respectively, and another point is
specified with X2,... weights. Both mechanical systems can be replaced by
equivalent systems storing all weights in the center of mass. So when the two
systems are combined, the final center of mass will be along a line between the
two centers of masses. If we increase the weights of the first mechanical system
proportionally scaling all weights, the location of the center of mass of the first
system does not change, but it has larger total mass. So the center of mass of the
combined system moves towards the first system along the line of the two centers
of masses.

Thus, using this combination, we can obtain points on the line defined by the two
centers of masses. If scaling is not negative, then we obtain the convex
combination of the two points, which is a line segment. With allowing negative
scaling, the total line can be specified.
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In Euclidean geometry, using Cartesian coordinates, the plane is a linear equation
of the coordinates. To find the plane in projective space, the points at infinity are
added to this plane. First, Cartesian coordinates are replaced by homogeneous
ones, assuming that h is not zero (it is forbidden to divide by zero). Then, both
sides are multiplied with h. In this new equation we do not divide by h, so we can
ignore the h is not zero” requirement. This corresponds to adding ideal points to
the plane.

The projective plane is thus a homogeneous linear equation of homogeneous
coordinates. We can also express it as a dot product of two 4D vectors, one
describes the point, the other the parameters of the plane.




Homogeén linearis transzformaciok

Homogén koordinatavektor szorzasa matrixszal

2D transzformacio 3x3 matrix
(X, .Y, h ] =1X,.Y,.h] Ts

1

3D transzformacio 4x4 matrix
(XY, . Z, . h ] =[X,.Y,.Z),h] Ty

1 1

Transzformacidk konkatenacidja: Asszociativ
[)(h " Yh .'Zh "h ]z(([)(h ’ Yh ’Zh’h]' Tl) T2)Tn) =
= Xy s Zph) Ty Ty " T) =
= [X;I’)//I’Zh’h].T

Homogeneous linear transformations are the multiplications of the vector of
homogeneous coordinates by a matrix. The vector can be a row vector when it is
on the left side of the matrix. On the other hand, the vector can also be a column
vector, and stands on the right side. The two approaches are similar, just the
matrix should be transposed accordingly. We shall prefer the case when the vector
is a row vector, because it is more intuitive when multiple transformations are
executed on after the other.

A 2D point is described by 3 homogeneous coordinates, thus the transformation
matrix is of 3x3 size.

For 3D points, the matrix has 4x4 elements.

In practice we execute not only a single transformation, but a sequence of
transformations. This can be imagined as transforming the point with T1, then the
result by T2, etc. However, as matrix multiplication is associative, i.e.
parentheses can be regrouped, we obtain the same result if we multiply the point
with the product of concatenation of the transformation matrices. Any sequence
of transformations can be expressed as a single matrix multiplication. If we
consider points as row vectors, then the order of transformation matrices will
correspond to the order of their execution.




Affin transzformaciok
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If the last column of the matrix is 0,0,1 in 2D and 0,0,0,1 in 3D, then the
transformation is affine, i.e. it maps lines to lines and preserves parallel lines.
From another point of view, the new Cartesian coordinates are linear functions of

the original Cartesian coordinates.

Such tranfromation matrices do not modify the last homogeneous coordinate h.



Affin transzformacios matrix sorai
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In case of affine transformations, the third column is [0, 0, 1] and the row vectors
of the remaining part of the matrix have important meaning. They describe what
happens with basis vector i, j, and the origin if the transformation is executed.




Homogeén linearis transzformaciok
tulajdonsagai
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Homogeneous linear transformations are matrix multiplications of 4 element
vectors in 3D and 3 element vectors in 2D. Such linear operations preserve linear
computations, so a line is transformed to a line or to a point if the line
degenerates, which never happens if T is invertible.



Invertalhatdo homogén linearis transzformaciok:
sikot sikba
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Invertible homogeneous transformations map planes to planes. If the
transformation is not invertible, it may happen that the resulting plane
degenerates to a line or to a point.

A plane is a collection of points P that satisfy the plane equation. Multiplying
every point P by matrix T, we get a collection of points P*. To find an equation
for P*, we transform P* back to get P since we know that P satisfies the original

equation.

As matrix multiplication is associative, we express a similar equation for the
transformed points as well, so they are also on a plane. We can even determine
the parameters of the plane (e.g. normal vector). If the parameters are a column
vector, the parameters of the original plane must be left-multiplied with the
inverse of the transformation matrix.
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The first elementary transformation considered is the 3D translation. This
transformation computes the sum of the Cartesian coordinates of the point and of
the translation vector p. This operation can be represented by a homogeneous

transformation matrix, where the diagonal elements are 1, the last row contains
the translation vector and all other elements are zero.
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The second transformation is scaling along the coordinate axes. This scales x
coordinates by Sx, y coordinates by Sy and z coordinates by Sz. Scaling is a
diagonal homogeneous linear transformaiton, including the scaling factors and 1
in the diagonal.




Z tengely koruli forgatas
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Rotation, for example around axis z, is a congruence transformation, thus it
surely belongs to the category of homogenous linear transformations.

If we rotate around axis z, coordinate z is left unchanged and x, y are modified.
Let us express X, y with polar coordinates r, alpha. Rotation does not modify r,
but the polar angle is increased by the rotation algle phi.

Using trigonometric identities, we can express the transformed point’s x’, y’
coordinates, which indeed can be realized by a matrix multiplication.
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Altaldnos w tengely koriili forgatas
Rodrigues formula

w: forgatasi tengely, legyen egységvektor
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r-w(r-w) P owxr Matrix sorai: #, j,k-ra alkalmazva
Hazi feladat!

Let us find the matrix rotating around a line crossing the origin and of direction
w. For the sake of notational simplicity, w is assumed to have unit length.

Let us decompose the vector to be rotated, r, into a component that is parallel
with w, r; = w(rw), and a vector that is perpendicular to it, r =

r-w(r-w). The parallel vector is not changed by the rotation. The perpendicular
component remains in the plane that is perpendicular to w.

The rotated perpendicular vector is expressed as a linear combination of r , and a
vector that is in the same plane and is perpendicular to r,. This vector isw x r, =

w x r. If r, is rotated by angle alpha, then it will be r’, cos(a) + w x r, sin(a).

Making the substitutions, we get the Rodrigues formula. How do we get a
matrix? We should evaluate this formula or (1, 0, 0) and get the first 3
components of the first row vector of the matrix. The other two rows are obtained
similarly.




Kozéppontos vetités (2D)
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So far, we discussed affine transformations by first introducing them and then
developing a matrix for each of them. Let us now reverse the direction of this
process and consider a 3x3 matrix, i.e. a transformation in the 2D plane and let us
determine what this transformation does. To make it more exciting, the third
columnisnot 0, 0, 1, so it is probably a non-affine transformation. Executing the
vector-matrix multiplication, we can obtain the transformation of point (x,y) in
homogeneous and also in Cartesian coordinates. Note that the new Cartesian
coordinates are non-linear functions of the original Cartesian coordinates, so this
transformation is not affine.

What does this transformations? It is a central projection onto a line of equation
px+qy=1 assuming the origin as the center of the projection.

With homogeneous linear transformations we can express even non affine
transformations but can still be sure that this transformation maps lines to lines,
line segments to line segments, etc.




Atforduldsi probléma
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Let us execute this transformation for line segments. We are happy because it is
enough to transform the two endpoints and the transformed pair of points can be
connected by a line segment according to the properties of homogeneous linear
transformations. For the first example, this is indeed true. However, for the
second example, the transformation is seemingly not a line segment but its
complement on the line, i.e. two half lines.

This is just a virtual contradiction. These two half lines also form a line segment
in projection plane. The ideal point at the ”end” of the line glues the two ends
together. The conclusion is that we should be careful since two points on a line
can define two line segments that complement each other, similarly as two points
on a cicrle can define two complementing arcs (a line in projective plane is
topologically equivalent to a circle, we can go around it).




2D képszintézis
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2D rendering is a sequence, called pipeline, of computation steps. We start
with the objects defined in their reference state, which can include points,
parametric or implicit curves, 2D regions with curve boundaries. As we shall
transform these objects, we they are vectorized, so curves are approximated by
polylines and regions by polygons. The rendering pipeline thus processes only
point, line (polyline) and triangle (polygon) primitives.

Modeling transformation places the object in world coordinates. This typically
involves scaling, rotation and translation to set the size, orientation and the
position of the object. In world, objects meet each other and also the 2D
camera, which is the window AABB (axis aligned bounding box or rectangle).
We wish to see the content of the window in the picture on the screen, called
viewport. Thus, screen projection transforms the world in a way that the
window rectangle is mapped onto the viewport rectangle. This can be done in a
single step, or in two steps when first the window is transformed to a square of
corners (-1,-1) and (1,1) and then from here to the physical screen. Clipping
removes those objects parts that are outside of the camera window, or
alternatively outside of the viewport in screen, or outside of the square of
corners (-1,-1) and (1,1) in normalized device space. The advantage of



normalized device space becomes obvious now. Clipping here is independent of the
resolution and of the window, so can be easily implemented in a fix hardware. Having
transformed primitives onto the screen, where the unit is the pixel, they are rasterized.
Algorithms find those sets of pixels which can provide the illusion of a line segment

or a polygon.
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Vectorization is trivial for parametric curves. The parametric range is
decomposed and increasing sample values are substituted into the equation of
the curve, resulting in a sequence of points on the curve. Introducing a line

segment between each subsequent pair of points, the curve is approximated by
line segments.

If the curve is closed, using the same strategy, a polygon approximation of the
region can be found.
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Polylines are often further decomposed to line segments and polygons to
triangles. Such a decomposition has the advantage that the resulting data
element has constant size (a line segment has 2 vertices a triangle has 3), and
processing algorithms will be uniform and independent of the size of the data
element.

Polylines can be easily decomposed to line segments. However, polygons are
not so simple to decompose to triangles unless the polygon is convex. A
polygon is broken down to smaller polygons and eventually to triangles by
cutting them along diagonals. A diagonal is a line segment connecting two
non-neighboring vertices, that is fully contained by the polygon. If the polygon
Is convex, then any line segment connecting two non-neighboring vertices is
fully contained by the polygon (this is the definition of convexity), thus all of
them are diagonals. This is not the case for concave polygons, when line
segments connecting vertices can intersect edges or can fully be outside of the

polygon.

The good news is that all polygons, even concave ones, have diagonals, so
they can be broken to triangles by diagonals (prove it). An even better news is



that any poligon of at least 4 vertices has special diagonals, that allow exactly one
triangle to be cut.
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A vertex is an ear if the line segment between its previous and next vertices is
a diagonal. According to the two ears theorem, every polygon of at least 4
vertices has at least two ears. So triangle decomposition should just search for
ears and cut them until a single triangle remains.

The proof of the two ears theorem is based on the recognition that any polygon
can be broken down to triangles by diagonals. Let us start with one possible
decomposition, and consider triangles as nodes of a graph, and add edges to
this graph where two triangles share a diagonal. This graph is a tree since it is
connected (the polygon is a single piece) and cutting every edge, the graph
falls apart, i.e. there is no circle in it. By induction, it is easy to prove that
every tree of at least 2 nodes has at least two leaves, which correspond to two
ears.



Fulvago algoritmus

For every step, we check whether or not a vertex is an ear. The line segment of
its previous and next vertices is tested whether it is a diagonal. This is done by
checking whether the line segment intersects any other edge (if it does, it is not
a diagonal). If there is no intersection, we should determine whether the line
segment is fully outside. Selecting an arbitrary inner point, e.g. the middle, we
check whether this point is inside the polygon. By definition, a point is inside
if traveling from this point to infinity, the polygon boundary is intersected odd
number of times.
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The first relevant step of rendering is placing the reference state primitives in
world, typically scaling, rotating and finally translating its vertices. Recall that
it is enough to execute these transformations to vertices, because points, lines
and polygons are preserved by homogeneous linear transformations. These are
affine transformations, and the resulting modeling transformation matrix will
also be an affine transformation. If the third column is 0,0,1, then other matrix

elements have an intuitive meaning, they specify what happens with basis
vector i, basis vector j, and the origin itself.



View transzformacio:
kameraablak kozepe az origéba

4+ vilag

X

x.Y) W,
(‘ |

ablak ablak

XV = .T-L'x
yv=y-c,

1 0 0
0 1 0

v 1=y, 0le, ¢, 1

Screen projection maps the window rectangle, which is the camera in 2D, onto
the viewport rectangle, which can be imagined as the photograph. This simple
projection is usually executed in two steps, first transforming the window onto

a normalized square, and then transforming the square to the viewport.

Transforming the window to a origin centered square of corners (-1,-1) and
(1,2) is a sequence of two transformations: a translation that moves the center
of the camera window to the origin; a scaling that modifies the window width
and height to 2. These are affine transformations that can also be given as a
matrix.
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Viewport transzformacio:
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glViewport(vx, vy, vw, vh);
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Clipping is executed usually in normalized device space where X,y must be
between -1 and 1. To be general, we denote the limits by xmin, xmax...

A point is preserved by clipping if it satisfies



half planes since the clipping
rectangle is the intersection of the
half planes.

This concept Is very useful when
line segments or polygons are
clipped since testing whether or not
the two endpoints of line segment or
vertices of a polygon are outside the
clipping rectangle cannot help to
decide whether there is an inner part
of the primitive.
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Szakasz vagas
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Let us consider a line segment and clipping on a single half plane. If both
endpoints are inside, then the complete line segment is inside since the inner
region, the half plane, is convex. If both endpoints are outside, then the line
segment is completely outside, since the outer region is also convex. If one
endpoint is inside while the other is outside, then the intersection of the line
segment and the clipping line is calculated, and the outer point is replaced by
the intersection.




Sutherland-Hodgeman
poligonvagas

PolygonClip (p[n] = q[m])
m=0;
for( i=0; i < n; i++) {
if (p[i] belsd) {
qlm++] = p[il;
if (p[i+l] kilsd)
g[m++] = Intersect(p[i], p[i+l], vagdegyenes)
} else {
if (p[i+l] belsd)
g[m++] = Intersect(p[i], p[i+l], vagdegyenes)

Elsé pontot még egyszer
atomb végére

Polygon clipping is traced back to line clipping. We consider the edges of the
polygon one-by-one. If both endpoints are in, the edge will also be part of the
clipped polygon. If both of them are out, the edge is ignored. If one is in and
the other is out, the inner part of the segment is computed and added as an
edge of the clipped polygon.

The input of this implementation is an array of vertices p and number of points
n. The output is an array of vertices g and number of vertices m.

Usually, we can assume that the ith edge has endpoints p[i] and p[i+1].
However, the last edge is an exception since its endpoints are p[n-1] and p[0O].
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Before starting the discussion of rasterization it is worth looking at the pipeline
and realizing that rasterization uses a different data element, the pixel, while
phases discussed so far work with geometric primitives. A primitive may be
converted to many pixels, thus the performance requirements become crucial
at this stage. In order to maintain real-time frame rates, the process should
output a new pixel in every few nanoseconds. It means that only those
algorithms are acceptable that can deliver such performance.



Szakasz rajzolas

Egyenes egyenlete:

y=mx+b

Egyeneshtizas

/ for( x =x1; x <=x2; x++) {
- Y=m*x + b;

y =Round( Y );
write( X, y );

1

x1 x2 :

Line drawing should provide the illusion of a line segment by coloring a few
pixels. A line is thin and connected, so pixels should touch each other, should
not cover unnecessary wide area and should be close to the geometric line. If
the slope of the line is moderate, i.e. X is the faster growing coordinate, then it
means that in every column exactly one pixel should be drawn (connected but
thin), that one where the pixel center is closest to the geometric line. The line
drawing algorithm iterates on the columns, and in a single column it finds the
coordinate of the geometric line and finally obtains the closest pixel, which is
drawn.

This works, but a floating point multiplication, addition and a rounding
operation is needed in a single cycle, which is too much for a few
nanoseconds. So we modify this algorithm preserving its functionality but
getting rid of the complicated operations.



Inkrementalis elv
e Egyenlet: Y(X)=mX + b= Y(X-1) + m

DDADrawLine(int x1, int yl, int X2, int y2) {
float m = (y2 - y1)/(x2 - x1);
float y = yl;
for(int x = x1; x <=x2; x++) {
int Y = round(y);
WRITE(x, Y, color);
y =y+tm;

The algorithm transformation is based on the incremental concept, which
realizes that a linear function (the explicit equation of the line) is evaluated for
an incremented X coordinate. So when X is taken, we already have the Y
coordinate for X-1. The fact is that it is easier to compute Y (X) from its
previous value than from X. The increment is m, the slope of the line, thus a
single addition is enough to evaluate the line equation. This single addition can
be made faster if we used fixed point number representation and not floating
point format. As these numbers are non integers (m is less than 1), the fixed
point representation should use fractional bits as well. It means that an integer
stores the Tth power of 2 multiple of the non-integer value. Such values can be
added as two integers.

The number of fractional bits can be determined from the requirement that
even the longest iteration must be correct. If the number of fractional bitsis T,
the error caused by the finite fractional part is 2*{-T} in a single addition. If
errors are accumulated, the total error in the worst case is N 2°{-T} where N is
the number of additions. N is the linear resolution of the screen, e.g. 1024. In
screen space the unit is the pixel, so the line will be correctly drawn if the total
error is less than 1. It means that T=10, for example, satisfies all requirements.



The line drawing algorithm based on the incremental concepts is as follows. First the
slope of the line is computed. The y value is set according to the end point. This y
stores the precise location of the line for a given X, so it is non integer. In a for cycle,
the closest integer is found, the pixel is written, and — according to the incremental
concept — the new y values for the next column is obtained by a single addition.

Rounding can be replaced by simple truncation if 0.5 is added to the y value.

If fixed point representation is used, we shift m and y by T number of bits and
rounding ignores the low T bits.
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This algorithm can be implemented in hardware with a simple counter that
generates increasing x values for every clock cycle. For y we use a register that
stores both its fractional and integer parts. The y coordinate is incremented by
m for every clock cycle.
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For triangle rasterization, we need to find those pixels that are inside the
triangle and color them. The search is done along horizontal lines of constant y
coordinate. These lines are called scan lines and rasterization as scan
conversion. For a single scan line, the triangle edges are intersected with the
scan line and pixels are drawn between the minimum and maximum X
coordinates.

The incremental principle can also be applied to determine scan-line and edge
intersections. Note that while y is incremented by 1, the x coordinate of the
intersection grows with the inverse slope of the line, which is constant for the
whole edge, and thus should be computed only once.

Again, we have an algorithm that uses just increments and integer additions.



Grafikus hardver/szoftver alapok
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From system point of view, a graphics application handles the user input, changes
the internal state, called the virtual world by modeling or animating it, and then
immediately renders the updated model presenting the image to the user. This
way, the user immerses into the virtual world, i.e. he feels that he is promptly
informed about its current state.

The process from the input to the virtual world is called the input pipeline.
Similarly, the process mapping the virtual world to the screen is the output
pipeline.

The complete system is a (control) loop with two important points, the virtual
world and the user. In the output pipeline, the virtual world is vectorized first
since only lines and polygons can be transformed with homogeneous linear
transformations. Then modeling, view and projection transformations are
executed moving the current object to normalized device space. Here clipping is
done, then the object is transformed to the screen, where it is rasterized. Before
being written in the frame buffer, pixels can undergo pixel operations, needed, for
example, to handle transparent colors. The frame buffer is read periodically to
refresh the screen. The user can see the screen and interact with the content by
moving the cursor with input devices and starting actions like pressing a button.
Such actions generate events taking also the screen space position with them.




Screen space is the whole screen in full-screen mode or only the application window. The
unit is the pixel. Note that screen space is different for the operating system and for
opengl. For MsWindows and XWindow, axis y points downward while in opengl y points
upward. Thus, y must be flipped, i.e. subtracted from the vertical resolution. The input
pixel coordinate goes from the screen to modeling space, thus inverse transformations are
applied in the reverse order. With input devices not only the virtual world can be modified
but also the camera can be controlled.



Szoftver architektura

glut...()

MouseLLD()
MouseLU()
MouseMov()

Alkalmazas
(CPU)

freeglut

Operacios
és ablakozo
rendszer
(Windows)

+ Grafikus konyvtar: OpenGL
gl...3dv()

} Rasztertar

PutPixel()

Our graphics application runs under the control of an operating system together
with other applications. The operating system handles shared resources like input
devices and the frame buffer as well, so a pixel data in the frame buffer can be
changed only via the operating system. Modifying pixels one by one from the
application would be too slow, so a new hardware element, called the GPU,
shows up that is responsible for many time consuming steps of rendering. The
GPU is also a shared device that can be accessed via the operating system. Such
accesses are calls to a library for the application program. We shall control the
GPU through a C graphics library called OpenGL.

On the other hand, to catch input events handled by the operating system, we
need another library. We shall utilize the freeGLUT for this purpose, due to its
simplicity and the portability (it runs over MsWindows, Xwindow, etc.)

The operating system separates the hardware from the application. The operating
system is responsible for application window management and also letting the
application give commands to the GPU via OpenGL, not to mention the re-
programming of the GPU with shader programs.

OpenGL is collection of C functions of names starting with gl. The second part of
the name shows what the function does, and the final part allows to initiate the
same action with different parameter numbers and types (note that there is not



function overloading in C).

To get an access to the GPU via OpenGL, the application should negotiate this with the
operating system, for which operating system dependent libraries, like the wgl for
MsWindows and gIX for Xwindow are available. Using them is difficult, and more
importantly, it makes our application not portable. So, to hide operating system dependent
features, we use GLUT, which translates generic commands to the operating system on
which it runs. It is simple and our application will be portable. GLUT function names start
with glut.
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The graphics output is implemented by OpenGL. The application window
management and the input are the responsibilities of GLUT. Our application
consists of a main function and a set of event handlers (we use event driven
programming paradigm in interactive systems). In main, our application program
interacts with GLUT and specifies the properties of the application window (e.g.
initial resolution and what a single pixel should store), and also the event
handlers.

An event handler is a C function that should be programmed by us. This function
is connected to a specific event of GLUT, and having established this connection
we expect GLUT to call our function when the specific event occurs. A partial list
of possible events are:

- Display event that occurs when the application window becomes invalid and
thus GLUT asks the application to redraw the window to restore its content.

- Keyboard event occurs when the user presses a key having ASCII code.

- Special event is like Keyboard event but is triggered by a key press having no
ASCII code (e.g. arrows and function keys).

- Reshape handler is called when the dimensions of the application window are
changed by the user.

- Mouse event means the pressing or releasing the button of the mouse.




- Idle event indicates the time elapsed and our virtual world model should be updated to
reflect the new time.

Event handler registration is optional with the exception of the Display event. If we do not
register a handler function, nothing special happens when this event occurs.
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Primitives (e.g. a line or a polygon) go down the pipeline, each having multiple
vertices associated with their homogeneous coordinates and possible attributes
(e.g. vertex color). Primitives must be transformed to normalized device space for
clipping, which requires the transformation of its vertices with the modeling,
viewing and projection transformation matrices. Clipping is done, so is
homogeneous division if the fourth homogeneous coordinate is not 1. Then the
primitive is transformed to screen space taking into account the viewport position
and size. The primitive is rasterized in screen space.

For performance reasons, OpenGL 3 retained mode requires the application to
prepare the complete data of the vertices and attributes of a single object rather
than passing them one by one. These data are to be stored in arrays on the GPU,
called Vertex Buffer Object (VBO). An object can have multiple VBOs, for
example, we can put coordinates in a single array and vertex colors in another.
Different VBOs are encapsulated into a Vertex Array Object (VAO) that also
stores information about how the data should be fetched from the VBOs and sent
to the input registers of the vertex shader. A single input register can store four 32
bit long words (4 floats called vec4, or four integers) and is called Vertex Attrib
Array.

The responsibility of the Vertex Shader is to transform the object to normalized




device space. If the concatenation of model, view and projection matrices is given to the
Vertex Shader, it is just a single matrix-vector multiplication. The output of the Vertex
Shader goes to output registers including gl_Position storing the vertex position in
normalized device space and other registers storing vertex attributes. Clipping,
homogeneous division, viewport transformation and rasterization are performed by the
fixed function hardware of the GPU, so these steps cannot be programmed. The output of
the rasterization step is the sequence of pixels with pixel coordinates and interpolated
vertex attributes. Pixel coordinates select the pixel that is modified in the frame buffer.
From other vertex attributes and global variables, the pixel color should be computed by
another programmable unit called the fragment shader.



Csucspont adatfolyamok

interleaved

VAO VAO
VBO 0 VBO 0 VBO 1
x1, y1 x1,yl R1, G1, B1
R1, G1,B1 x2,y2 R2, G2, B2
X2, y2 x3,y3 R3, G3, B3
R2, G2, B2 7 7

glVertexAtt Pointer

X3, y3 )\
R3, G3, B3 1
Vertex shader ﬁ}ttribArrav 0 'A_ttribArrav 1| AttribArray ...

Input registers * glBindAttribLocation
—_invarl in var2

Vertex shader

Let us zoom out the connection of the vertex buffer objects, vertex shader input
registers called AttribArrays, and vertex shader input variables. The object is
described in arrays called VBOs. For example, coordinates can be stored in one
array, colors in another (this strategy is called Structure Of Arrays, or SOA for
short). To allow the Vertex Shader to process a vertex, its input registers must be
filled with the data of that particular vertex, one vertex at a time. Function
glVertexAttribPointer tells the GPU how to interpret the data in VBOs, from
where the data of a single vertex can be fetched, and in which AttribArray a data
element should be copied. For example, coordinates can be copied to
AttribArray0 while colors to AttribArrayl (a single register can store 4 floats).

When the Vertex Shader runs, it can fetch its input registers. It would not be too
elegant if we had to refer to the name of the input register, e.g. AttribArray 0, so
it is possible to assign variable names to it with gIBindAttribLocation. For
example, AttribArray0 can be the “vertexPosition”.

Note that this was only one possibility of data organization. For example, it is
also perfectly reasonable to put all data in a single array where coordinates and
attributes of a single vertex are not separated (this strategy is the Array Of
Structures, or AOS). In this case glVertexAttribPointer should tell the GPU where
an attribute starts in the array and what the step size (stride) is.
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#include <GL/glew.h>
#include <GL/freeglut.h>

int main(int argc, char * argv[]) {
glutInit(&argc, argv); // init glut
glutInitContextVersion (3, 0);
glutInitWindowSize (600, 600) ;
glutInitWindowPosition (100, 100);
glutInitDisplayMode (GLUT RGBA|GLUT_ DOUBLE) ;

glutCreateWindow (“Hi Graphics") ;
glewExperimental = true; // magic
glewInit(); // init glew

glViewport (0, 0, 600, 600); 'RI
onInitialization() ;

y

glutDisplayFunc (onDisplay); //event handler —— :§;—+

|
*
=

glutMainLoop() ; i ‘1
return 1; I

} (-lc-l)

In the main function of a graphics application, we set up the application window
with the help of GLUT telling the initial position, size, what data should be stored
in a pixel, and also what functions should be called when different events happen.
At the end, the message loop is started, which runs in circles, checks whether any
event occurred for which we have registered an event handler, and if this is the
case, it calls the respective event handler.

The main function can also be used to initialize data in OpenGL (on the GPU),
especially those which are needed from the beginning of the program execution
and which do not change during the application. We need shader programs from
the beginning, so this is a typical place to compile and link shader programs and
upload them to the GPU.

Let us start with the main function. Two header files are needed.

GLEW is the opengl Extension Wrangler library that finds out what extensions
are supported by the current GPU in run time. GLUT is a windowing utility
toolkit to set up the application window and to manage events.

In the main functions, first the application window is set up with glut calls:
- glutinit initializes glut and allows use to communicate with the GPU via




OpenGL.

- glutinitContextVersion sets the required OpenGL version. In this case, we want opengl
3.0.

- glutInitWindowsSize specifies the initial resolution of the application window.

- glutInitWindowPosition specifies where it is initially placed relative to the upper left
corner of the screen.

- glutInitDisplayMode tells glut what to store in a single pixel. In the current case, we
store 8 bit (default) R,G,B, and A (opacity) values, in two copies to support double
buffering.

- glutCreateWindow creates the window, which shows up.

The Extension Wrangler is initialized

- glewExperimental = true: GLEW obtains information on the supported extensions from
the graphics driver, so if it is not updated, then it might not report all features the GPU
can deliver. Setting glewExperimental to true gets GLEW to try the extension even if it
is not listed by the driver.

- glewlnit makes the initialization

From here, we can initialize OpenGL.
- glViewport sets the render target, i.e. the photograph inside the application window
- onlnitialization is our custom initialization function discussed on the next slide.

The remaining functions register event handlers and start the message loop. For the time
being, only the onDisplay is relevant, which is called whenever the application window
becomes invalid. We use this function to render the virtual world, which consists of a
single green triangle, directly given in normalized device space.



vao

onlnitialization()

unsigned int shaderProgram;
unsigned int vao; // virtual world on the GPU 3 vertices

2 floats/vertex

vbo

void onInitialization() {
glGenVertexArrays (1, &vao);
glBindVertexArray (vao); // make it active

AttribArray 0

unsigned int vbo;// vertex buffer object
glGenBuffers (1, &vbo); // Generate 1 buffer
glBindBuffer (GL_ARRAY BUFFER, vbo) ;
// Geometry with 24 bytes (6 floats or 3 x 2 coordinates)
static float vertices|[] = {-0.8,-0.8, -0.6,1.0, 0.8,-0.2};
glBufferData (GL_ARRAY BUFFER, // Copy to GPU target

sizeof (vertices), // # bytes

vertices, // address
GL_STATIC DRAW); // we do not change later
glEnableVertexAttribArray(0); // AttribArray 0

glVertexAttribPointer (0, // vbo -> AttribArray 0
2, GL_FLOAT, GL FALSE, // two floats/attrib, not fixed-point
0, NULL); // stride, offset: tightly packed

In onlinitialization those opengl data are initialized that are typically constant
during the application, so they do not have to be set in every drawing. In our
program, this includes the constant geometry (the triangle), and the GPU shader
programs. The shaderProgram and the vao are set here but also used in the
onDisplay, therefore they are global variables.

First we allocate one vertex array object and its id is vao. With Binding, this is
made active, which means that all subsequent operations belong to this vao until
another vao is bound or the current one is unbound with binding 0.

In the second step, one vertex buffer object is allocated, which will be part of the
active vao (we have just one, which is active). This vertex buffer object is made
active, so all subsequent operations are related to this until another is bound.

Array “vertices” stores the geometry of our triangle, and is obviously in the CPU
memory. It contains 6 floats, i.e. 24 bytes. With glBufferData the 24 bytes are
copied to the GPU. With the last parameter of glBufferData we can specify which
type of GPU memory should be used (the GPU has different types of memory
with different write and read speeds and capacity, so the driver may decide where
to copy this 24 bytes based on our preference). We say that the 24 bytes will not
be modified but it would be great if it could be fetched fast (constant memory




would be an ideal choice). So far we said nothing about the organization and the meaning
of the data, it is simply 24 bytes, the GPU does not know that it defines 3 vertices, each
with 2 Cartesian coordinates, which are in float format.

glVertexAttribPointer() defines the interpretation of the data and also that the data
associated with a single vertex goes to the input register (AttribArray) number 0. It
specifies that a single vertex have two floats, i.e. 8 bytes. If it was non floating point
value, it would also be possible to put the binary point to the most significant bit, but we
set this parameter to GL_FALSE.

The last two parameters tell the GPU how many bytes should be stepped from one vertex
to the other (if it is O, it means that the step size is equal to the data size, 2 floats in this
case), and where the first element is (at the beginning of the array, so the pointer offset is
zero). Stride and offset are essential if interleaved vbos are used.



#version 130 #version 130

precision highp float; precision highp float;
uniform mat4 MVE; uniform vec3 coloxr;

in vec2 vp; out vecd outColor;
void main() { void main() {

gl_Position = vecd(vp.x,vp.y,0,1) * MVP; outColoxr = vecd(color,1);

}

}

static const GLchar * vertexSource = R" ™.
static const GLchar * fragmentSource = R"( ¥)"“;

unsigned int vertexShader = glCreateShader (GL_VERTEX SHADER) ;
glShaderSource (vertexShader, 1, &vertexSource, NULL) ;

gl_FragCoord
regl
reg2
reg3
reg4

s

rasztertar

Vertex shader

gl_Position

. bhader (vertexShader) ;
AttribArray 0
Fragment
Shader
outColor
glBindAttribLocation (shaderProgram, 0, "vp");
glBindFragDatalLocation (shaderProgram, 0, "outColor");

glLinkProgram(shaderProgram) ;
glUseProgram(shaderProgram) ;

The remaining part of the onlnitialization gets the shader programs ready. The
source of the shader programs can be read from a file or directly copied from a
string. We use here the latter option. As programs are typically written in more
than one line, the string cannot be simple “...” but should be special and hold
new line characters, which is possible with the R”( ... )” C++ feature.

The vertex shader source code starts with the version number that tells the
compiler how matured GPU is assumed during execution.

Uniform parameters are like constants that cannot change during the drawing of a
single primitive. MVP is a 4x4 matrix (type mat4), which represents the model-
view-projection matrix. The vertex shader has one per-vertex attribute, defined
with variable name vp and storing the x, y coordinates of the current vertex. The
vertex shader code computes the multiplication of 4 element vector that is the
conversion of vp to 3D homogeneous coordinates and the 4x4 MVP matrix, and
the result is written into a specific output register called gl_Position, which
should get the point transformed to normalized device space. The vertex shader
could output other variables as well, which would follow the point during
clipping and rasterization, and would be interpolated during these operations.
Clipping, homogeneous division, viewport transform and rasterization are fixed
function elements that cannot be programmed.



The output of the fixed function part is the sequence of pixels (called fragments)
belonging to the current primitive and also the variables that are output by the vertex
shader, having interpolated for the current pixel. The pixel address is in register
gl_FragCoord, which cannot be modified, but from the other registers and uniform
variables, the color of this fragment can be obtained by the fragment shader processor. It
has one uniform input called the color, which will determine the output color stored in
variable outColor.

The very beginning of the pipeline, vertex coordinate variable vp is connected to the
vertex shader input register (AttribArray) number 0 as told by
glBindAttriblocation. The output of the fragment shader goes
to the frame buffer as requested by glBindFragDatalocation.

Finally, the shader program is linked, copied to the shader
processors to be executed by them.



#version 130 #version 130
precision highp float; pmisi_on highp float;
uniform matd4d MVP; uniform vec3 color:;
in vec2 vp; out vecd outColor;
void main() { void main() {
gl_Position = vecd(vp.x,vp.y,0,1) * MVP; outColor = vecd (color,1);
} }
void onDisplay( ) {
glClearColoxr (0, 0, 0, 0); // background color

glClear (GL_COLOR_BUFFER BIT); // clear frame buffer

// Set vertexColor to (0, 1, 0) = green
int location = glGetUniformLocation (shaderProgram, “color");
glUniform3f (location, 0.0£f, 1.0£, 0.0f); // 3 floats

float MVPtransf[4][4] = {( 1, 0, 0, O, // MVP matrix,
0; 1 0 '0; // row-major!
0, 0, 1, 0,
0, 0; 0; %1 ¥;

location = glGetUniformLocation (shaderProgram, "MVP");
glUniformMatrix4fv(location, 1, GL_TRUE, &MVPtransf[0][O0])
glBindVertexArray (vao); // Draw call

glDrawArrays (GL TRIANGLES, 0 /*startIdx*/, 3 /*# Elements*/);
glutSwapBuffers( ); // exchange buffers for double buffering

We have registered a single event handler (onDisplay) that reacts to the event
occurring when the application window gets invalid (DisplayFunc).

In this function, the virtual world (consisting of the single green triangle) is
rendered.

glClearColor sets the color with which the pixels of the application window is
cleared. This color is black. The actual clearing is done by glClear.
GL_COLOR_ BUFFER BIT stands for the frame buffer
storing color values.

Drawing consists of setting the wvalues of uniform
variables of shaders and then forcing the geometry
through the pipeline, which is called the draw call.
Finally, the buffer used for drawing so far is swapped
with the buffer the user could see so far by
glutSwapBuffers, so the result will be visible to the
user.

The fragment shader has a single uniform variable
called color and of type vec3, which can be set with




function glUniform3f (location, 0.0£f, 1.0£f, 0.0f) to value
(0,1,0)=green. Note that ”3f” at the end of the function
name indicates that this function takes 3 float parameters.
Parameter location is the serial number of this uniform
variable, which can be found with

glGetUniformLocation (shaderProgram, “color") which returns
the serial number of uniform variable called “color” in the
shader programs.

The vertex shader has uniform variable MVP of type mati4,
i.e. it is a 4x4 matrix. First, its serial number must be
obtained, then its value can be set with glUniformMatrix4fv.
Here fv means that matrix elements are floats (f) and
instead of passing the 16 floats by value, the address of
the CPU array is given (v) from which the values can be
copied (pass by address). The second parameter of
glUniformMatrix4fv says that 1 matrix is passed, the third
parameter that this is a row-major matrix and should be kept
this way.

This issue can cause a lot of confusion:
- In C or C++ two-dimensional matrices are of row-major.

- In GLSL two-dimensional matrices are of column-major.

So if we use them without caution, we might apply the
transpose of the matrix and not what we wanted. There are
many solutions for this problem:

1. Use an own 2D matrix class in C++ that follows the
column-major indexing scheme, and consider vectors of
points as row vectors both on the CPU and on the GPU.

2.Use an own 2D matrix class in C++ that follows the
column-major indexing scheme, and consider vectors of
points as column vectors both on the CPU and on the GPU.
The matrices will be transposed with respect to the
previous solution.

3. Use the standard 2D matrix indexing on the CPU (row-
major) and the standard 2D matrix indexing on the GPU
(column-major), but consider points as row vector in the
CPU program (and therefore put on the left side of the
transformation matrix) and column vector in the GPU
program (and put on the right side of the matrix).

4. Use the standard 2D matrix indexing on the CPU (row-
major) but transpose the matrix when passed to the GPU,
and consider points as row vector both in the CPU program



and in the GPU program.

We use option 4, and setting the third parameter of
glUniformMatrix4fv to TRUE enables just the required
transpose.

Vertex Array Objects are our virtual world objects already
uploaded to the GPU. With glBindVertexArray (vao) we can
select one object for subsequent operations (drawing) and
finally glDrawArrays gets the current VAO to feed the
pipeline, i.e. this object is rendered. We may not send all
vertices of this object, so with startIdx and number of
elements a subset can be selected. Setting startIdx to 0 and
sending all 3 points, our whole triangle is rendered. The
first parameter of glDrawArrays tells the GPU the topology
of the primitive, that is, what the vertices define. In our
case, triangles, and as we have only 3 vertices, a single
triangle.



glDrawArrays( primitive,

- L startldx,
OpenGL pr|m|t|vek numOfElements);
® (]
o
GL LINES
GL POINTS GL_LINE_STRIP

GL_LINE_LOOP

A

GL_TRIANGLES

GL QUAD STRIP

GL TRIANGLE STRIP GL TRIANGLE FAN

This is the set of possible primitive types. Basically points, line segments and
triangles, but in sophisticated options sharing vertices is also possible.



1. hazi
Twinkle, twinkle little star

A 2D virtualis vilag harom, legalabb 7-agu forgd és
pulzalo csillagot tartalmaz, amelyek szine kilonbdzd.
A legfényesebb csillag az egérklikkek altal kijelolt zart
-0.8-as tenzioju Catmull-Rom spline-t koveti, amely-
nek csomaértékei a gomblenyomaskori idok. A leg-
utolsé és legelsd kontrolpont kézott 0.5 sec telik el,
majd a csillag periodikusan Ujra bejarja a gérbét. A
gorbe mindenhol folytonosan derivalhato, a legelsé
pontban is. A masik két csillagot a legfényesebb csil-
lag a Newton féle gravitacios erével vonzza, azaz
mozgatja. A gravitadciés konstanst gy kell meg-
valasztani, hogy a mozgas élvezhetd legyen. SPACE
lenyomasara a virtualis kamerankat a fényes csillag-
hoz kapcsolhatjuk, egyébként a kamera statikus.
Bonusz: Doppler effektus
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Science is either physics or
stamp collecting.
Rutherford

3D képszintézis fizikai
alapmodellje

Szirmay-Kalos LaszIl6




3D képszintezis

Tone pixel Virtualis vilag
mappmg

szin Valés vilag I )

In order to compute the image, the power arriving at the eye from the solid
angle of each pixel needs to be determined on different wavelengths.

We establish a virtual world model in the computer memory, where the user is
represented by a single eye position and the display by a window rectangle.
Then we compute the power going through the pixel toward the eye on
different wavelengths, which results in a power spectrum.

If we can get the display to emit the same photons (i.e. the same number and
of the same frequency), then the illusion of watching the virtual world can be
created. As the human eye can be cheated with red, green, and blue colors, it is
enough if the display emits light on these wavelengths. The last step of
rendering is the conversion of the calculated spectrum to displayable red,
green and blue intensities, which is called tone mapping. If we compute the
light transfer only on these wavelengths, then this step can be omitted and the
resulting spectrum can be used directly to control the monitor.

One crucial question is what exactly should be computed that describes the
strength of the light intensity and when the pixel is controlled accordingly,
provides the same color perception as the surface. Note that the pixel is at a
different distance than the visible surface. The orientations of the display



surface and of the visible surface are also different. The total emitted power would
definitely be not good since it would mean less photons for the eye for farther sources.
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We should work with power density instead of the power, that is computed
with respect to the solid angle in which the light is emitted and with respect to
the size of the projected surface. The density computed as the power divided
by the projected surface and the solid angle of emission is called the radiance.

An important theorem states that if two surfaces have the same radiance, then
they look identical no matter whether they are at a different distance or have
different orientation. The proof is based on that if in a solid angle the eye
would gather the same number of photons, i.e. energy, then it would not be
able to distinguish the source surfaces. Let us compute this power for two
surfaces that are seen in the same solid angle and have the same radiance.

If the surface is closer, then its real area is smaller, but the solid angle in
which the pupil of the eye can be reached from this surface is larger. Both the
solid angle and the surface changes with the square of the distance and the two
factors compensate each other. If the surface is not perpendicular to the
viewing direction, then the surface seen in a given solid angle is larger, but the
cosine factor will be proportionally smaller, so again we see no difference.

So, the conclusion is that we should compute the radiance of a surface and set



the pixel of the display to have the same radiance. Then the two surfaces will be
identical for the eye.

The fact that surfaces having the same radiance but at different distances look similar
can also be interpreted as that the radiance does not change along a ray.



Fény-fellilet kdlcsénhatas

Radiancia = Irradiancia - BRDF
|

L(x, V)= Lf”(x, L) cosBl’ - £, (Lx,V)
def L (x,V
fr (Lx,V) = ﬁ

Helmholtz térvény:

Jr (Lx,V) = £, (V.xL)

The reflected radiance of a surface depends on the irradiance and the
likelihood of the reflection. The irradiance is the incident radiance and a
geometric factor that expresses that the illumination is weaker if the light
arrives from a non-perpendicular direction since a unit cross section light beam
illuminates a larger surface on which the photons are distributed. This cosine
term is also called the geometric term and term expresses that a non
perpendicular illumination is spread over a larger surface. The likelihood of
reflection is expressed by the Bi-directional Reflectance Distributrion
Function. In real life, BRDFs are symmetric.
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In computer graphics we consider photons in the visible wavelength range, roughly from 300
to 700 nanometer wavelengths. A photon has zero rest mass, otherwise it would not be able to
fly with the speed of light. However, it has non-zero energy and impulse. The energy is
proportional to frequency f of the light as stated by Einstein who invented this law when
examining the photonelectric effect. He got his Nobel prize for this and not for the theory of
relativity. Using the equivalence of the energy and mass, which was also published by Einstein
as a short paper in 1905, we can assign a relativistic weight to the photon as the Planck
constant h multiplied by the frequency and divided by the square of the speed of light.

If f is small, then this relativistic mass is small. When photons meet a material, photons collide
or scatter by the electrons or less probably with the core of atoms. For photons belonging to
the visible spectrum, the relativistic mass of the photon is much smaller than the mass of the
electron, thus a photon bounces off the electron like a ball bounces off from a rigid wall or a
billiard ball bounces off from the edge of the table. If the collision is elastic, then the photon
energy is preserved and the electron does not change its energy level.

If the collision is inelastic, then the energy of the photons is absorbed by the electron, this is
the photoelectic effect, and the number of photons gets smaller. The probability of inelastic
scattering, i.e. the albedo associated with a collision is energy dependent.

Summarizing when photons meet electrons, their number may get smaller but their energy
level and consequently their frequency remain the same. This is the reason that in computer
graphics wavelengths or frequencies are handled independently.
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The simplest arrangement for the light transfer is a single plane that separates
the space into two half spaces of different materials. According to the laws of
geometric optics, the illumination ray is broken to a relfection ray meeting the
reflection law and a refraction ray obeying the Snell’s law of refraction. Here n
is the index of refraction, which expresses the ratios of speeds of light outside
and inside the material. The Fresnel equations define the amount of reflected
energy (i.e. the probability that a photon is reflected). The Fresnel function can
be calculated from index of refraction n, extinction k, incident angle theta’ and
refraction angle theta. The extinction is negligible for non-metals. We also
show a simplified Fresnel term.



Fresnel flUggvény
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The Fresnel function depends on the wavelength and on the incident angle.
When we see an object, we can observe surfaces of many different
orientations, so we perceive the Fresnel function as a whole.
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vec3 reflect(vec3 inDir, vec3 normal)

{

return inDir - normal * dot(normal, inDir) * 2 .0f;

}

To render smooth surfaces, we should compute the ideal reflection direction.
Assume that incident direction v and surface normal N are unit length vectors.

Incident direction v is decomposed to a component parallel to the normal and a
component that is perpendicular to it. Then, the reflection direction is built up
from these two components.
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The refraction direction calculation is also similar. The refraction direction v_t
is expressed as a combination of the normal vector and a vector that is
perpendicular to the normal, N_perpendicular. These vectors should be
combined with weights cos(beta) and sin(beta) where beta is the refraction
angle.

N_perpendicular is expressed from v+N cos(alpha) by dividing it with its
length sin(alpha).

Then sin(beta)/sin(alpha) is replaced by the reciprocal of the index of
refraction.



SmoothMaterial class

class SmoothMaterial ({
vec3 FO; // FO
float n; // n
public:
vec3 reflect (vec3 inDir, vec3 normal) {
return inDir - normal * dot(normal, inDir) * 2 .0f;
}
vec3 refract(vee3 inDir, vec3 normal) {
float ior = n;

float cosa = -dot(normal, inDir);
if (cosa < 0) { cosa = -cosa; normal = -normal; ior = 1/n; }
float disc = 1 - (1 - cosa * cosa)/ior/ior;

if (disc < 0) return reflect(inDir, normal) ;
return inDir/ior + normal * (cosa/ior - sqrt(disc));
}
vec3 Fresnel (vec3 inDir, vec3 normal) {
float cosa = fabs(dot(normal, inDir));
return FO + (vec3(1, 1, 1) - FO0) * pow(l-cosa, 5);
}
}:

Putting these together, we can implement a material class representing ideally
smooth surfaces. By “smooth” surface we mean a surface that can be assumed
to be planar if we consider just a region that is visible in a pixel.

The material properties are expressed by the Fresnel function at perpendicular
illumination, FO, which is wavelength dependent since the index of refraction
and the extinction are wavelength dependent. In addition to the Fresnel, we
also need the index of refraction for the calculation of the refraction direction.
Here, wavelength dependence is usually ignored, so we do not simulate
dispersion.
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Surfaces are usually not smooth, so they reflect light not just in the ideal
reflection direction but practically in all possible directions. Physically, we can
imagine these rough surfaces as a random collection of ideal mirror
microfacets that reflect light according to their random orientation.

As we see not a single microfacet in a pixel, but a large collection of them, we
perceive the average radiance reflected by this collection.

Photons may have a single scattering on these microfaces when the average is
maximum around the ideal reflection direction of the mean surface. On the
other hand, photons may get scattered multiple times, when they “forget” their
original direction, so the reflection lobe will be roughly uniform.

Instead of following a probabilistic reasoning, we handle these rough surfaces
as a black-box, i.e. empirical model. That is, we describe the behavior of the
surface based on everyday experience without any structural analysis. By
experience, we say that a rough surface reflects light into all directions, but
more light is reflected into the neighborhood of the ideal reflection direction.
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Our first model is for very rough surfaces where all photons get reflected
multiple times. Such materials (snow, sand, wall, chalk, cloth etc) have a matte
look, they look the same from all viewing directions. Thus, the radiance, which
equals to the incident radiance times the BRDF times the geometry term, is
independent of the viewing direction. Incident radiance and the geometry term
are already independent of the viewing direction, thus the BRDF must also be
independent of the viewing direction. According to Helmholtz reciprocity, if
the BRDF is independent of the viewing direction, it must be independent of
the illumination direction as well, so the BRDF is direction independent.

Diffuse surfaces correspond to very rough surfaces where a photon collides
many times. The Fresnel depends on the wavelength, which is strong for
metals and weak for non-metals. Even if a single reflection changes the
spectrum just a little, multiple reflections amplify this effect, so the final
reflected light will have a modified spectrum. Diffuse reflection is primarily
responsible for the “own color” of the surface.
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The reflected radiance is the incident radiance times the BRDF, which is
constant now, and the geometry term. So for diffuse surfaces, the reflected
radiance is proportional to the cosine of the orientation angle. This cosine can
be computed as a dot product of the unit surface normal and the unit
illumination direction.

If the cosine is negative, i.e. the angle between the surface normal and the
illumination direction is greater than 90 degrees, then the illumination is
blocked by the object whose surface is considered. In such cases, the negative
value is replaced by zero.
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Shiny, glossy or specular surfaces also reflect the light in all possible
directions, but they look differently from different viewing directions. We can
observe the blurred reflection of the light sources, thus they reflect more light
close to the ideal reflection direction.

We model such surfaces as a combination of diffuse reflection where the
radiance is constant and a specular reflection where the radiance is great
around the ideal reflection direction. According to the microfacet model,
diffuse reflection is caused by multiple light microfacet interaction while
specular reflection is the result of a single light microfacet interaction. In
order to model the specular reflection lobe, we need a function that is
maximum at the reflection direction and decreases in a controllable way if the
viewing direction gets farther from the reflection direction. Phong and Blinn
proposed the cos”shininess(delta) function where delta is the angle between
the macroscopic surface normal and the microfacet normal. The shininess
exponent defines how shiny the surface is.
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Diffuse reflection simulates multiple light-surface interaction and is colored.
Specular reflection is the model of the single light-surface interaction and it is
proportional to the Fresnel function. For non metals, the wavelength
dependence of the Fresnel is moderate, so for non metals the specular
reflection is said to be ”white”.



RoughMaterial class

class RoughMaterial {
vec3 kd, ks;
float shininess;
public:
vec3 shade( vec3 normal, vec3 viewDir, wvec3 lightDir,
vec3 inRad)
{
vec3 reflRad(0, 0, 0);
float cosTheta = dot(normal, lightDir);
if (cosTheta < 0) return reflRad;
reflRad = inRad * kd * cosTheta;
vec3 halfway = (viewDir + lightDir) .normalize()
float cosDelta = dot(normal, halfway) ;
if (cosDelta < 0) return reflRad;
return reflRad + inRad * ks * pow(cosDelta,shininess);
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irany pozicionalis

Real light sources are defined by their emission radiance, L"e. When the
reflected radiance of a point is considered, the contribution of all those light
source points should be added which are visible from the point of interest. This
means integration. Thus, we often prefer abstract light source models, that can
illuminate a surface just from a single direction, which saves integration.

In case of directional light sources, the radiance is constant everywhere, so is
the illumination direction. In other words, the illumination rays are parallel.
The Sun is an example for directional light source if we are on the Earth.

For point light sources, the illumination direction points from the location of
the source to the illuminated point. The radiance decreases with the square of
the distance.

If we ignore the dependence of the radiance on the distance, directional light
sources can be considered as point sources being at infinity.
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Rendering requires the determination of the surface that is visible through a
pixel, then the computation of the radiance of this surface in the direction of
the eye.

The radiance computed at least on the wavelengths of red, green, and blue, and
the results will be written into the frame buffer. In this calculation, light
sources are defined by their radiance or power, rough surfaces with their
BRDFs, smooth surfaces with their Fresnel functions.
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There are different tradeoffs between accuracy of the light transport
computation and the speed of the computation.

In the local illumination setting, when the radiance of a surface is calculated,
we consider only the direct contribution of the light sources and ignore all
indirect illumination.

In recursive ray tracing, indirect illumination is computed only for smooth
surfaces, in the ideal reflection and refraction directions.

In the global illumination model, indirect illumination is taken into account for
rough surfaces as well. In engineering applications we need global
illumination solutions since only these provide predictable results. However, in
games and real time systems, local illumination or recursive ray tracing will
also be acceptable.
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Light is an electromagnetic wave, color is just an illusion created by the
human eye and the brain. As the eye is a poor spectrometer, we can cheat it
with a different spectrum, the eye cannot tell the difference. This fact is
exploited by displays, which can emit light just around three wavelengths. So
the task is to convert the computed spectrum to the intensities of the three
lamps associated with a pixel. To solve this, we should understand how the
illusion of color is created. As the illusion is deep in our brain, we can use only
subjective comparative experiments to find out what color means.

In our experiment, we have two white sheets, the first is illuminated by a unit
power monochromatic light beam of wavelength lambda, the other is by three
lamps of controllable intensities and of wavelengths, say, 444, 526, 645
nanometers, which could be seen as red, green and blue (we could choose
other reference wavelenths as well, they just have to be far enough; this
particular selection is justified by the fact that there exists materials that emit
light on these wavelengths). A human observer sits in front of the two white
sheets and his task is to control the intensities of the three lamps in order to
eliminate any perceived difference between the two sheets. If it happens, the
monochromatic light and the controlled three component light provide the
same color and are called metamers. If the same experiment is repeated in
many discrete wavelengths, three color matching functions can be obtained.



Note that the red and the green matching function have negative parts as well, which
means, for example, that the 500 nm light can be matched only if some red is added to
it.

In the second experiment we can try to match two, three, etc. component light beams
and beams of non-unit intensity. We will come to the conclusion that the
corresponding r,g,b values of polychromatic light are the sums of the r,g,b, primaries
of the monochromatic components, and also that if the intensity of the beam is not
unit, then the r,g,b intensities should also be multiplied by the same factor. This means
that colors are linear objects.
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Based on these experiments, we can establish the Grasmann laws of color
science. Any spectrum can be matched with three primaries by weighting the
monochromatic components by the color matching functions and adding
(integrating) different monochromatic components.
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A physically plausible simulation would be executed on many wavelengths
(note that wavelengths can be handled independently) resulting in a visible
spectrum. The final step of rendering is the conversion of this spectrum to red,
green, blue intensities, which can be set in the frame buffer, and ultimately on
the display.

However, in many cases, we use an approximation. We assume that light
sources emit light directly on the wavelengths of the red, green, blue. Thus, we
can immediately get the r,g,b, values without any integration. Note, however,
that the rendering process is not linear since the products of radiance values
and BRDFs are computed, so this simpler option is just an approximation.



Sugarkovetés:
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In local illumination rendering, having identified the surface visible in a
pixel, we have to compute the reflected radiance due to only the few
abstract light sources. An abstract light source may illuminate a point just
from a single direction. The intensity provided by the light source at the
point is multiplied by the BRDF and the geometry term (cosine of the angle
between the surface normal and the illumination direction). The intensity
provided by the light source is zero if the light source is not visible from the
shaded point. For directional sources, the intensity and the direction are the
same everywhere. For point sources, the direction is from the source to the
shaded point and decreases with the square of the distance.
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The BRDF times the geometry factor equals to the following expression for
diffuse + Phong-Blinn type materials. Here we use different product
symbols for different data types; * for spectra, - for multiplying with a
scalar, and e for the dot product of two vectors.
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In the local illumination model all surfaces that are not directly visible from
the light sources are completely back. However, this is against everyday
experience when some light indirectly illuminates even hidden regions as
well. So, we add an ambient term to the reflected radiance, where the
intensity is uniform everywhere and in all directions, and the ambient
reflection k_a is a material property (if a physically accurate model is
applied, k_a = k_d*\pi).

Note, however, that adding the ambient term is a very crude approximation
of true indirect lighting, which can be obtained by global illumination
algorithms (upper right image).



Lathatosag: trace a ray

plxel . struct Hit {

float t;

vec3 position;

vec3 normal;
Material* material;
ray(f) =eye + v+, t>0 Hit() { £t = -1; }

ey

Hit firstIntersect(Ray ray) ({

Hit bestHit;

for (Intersectable * obj : objects) {
Hit hit = obj->intersect (ray); // hitt<0if nointersection
if(hit.t > 0 && (bestHit.t < 0 || hit.t < bestHit.t))

bestHit = hit;
}
return bestHit;

}

A fundamental operation of ray tracing is the identification of the surface
point hit by a ray. The ray may be a primary ray originating at the eye and
passing through the pixel, it can be a shadow ray originating at the shaded
point and going towards the light source, or even a secondary ray that also
originates in the shaded point but goes into either the reflection or the
refraction direction. The intersection with this ray is on the ray, thus it
satisfies the ray equation, ray(t)=eye + vt for some POSITIVE ray parameter
t, and at the same time, it is also on the visible object, so point ray(t) also
satisfies the equation of the surface. A ray may intersect more than one
surface, when we need to obtain the intersection of minimal positive ray
parameter since this is the closest surface that occludes others.

Function FirstIntersect finds this point by trying to intersect every surface
with function Intersect and always keeping the minimum, positive ray
parameter t.
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The implementation of function Intersect depends on the actual type of the
surface, since it means the inclusion of the ray equation into the equation of
the surface. The first example is the sphere. Substituting the ray equation
into the equation of the sphere and taking advantage of the distributivity of
the scalar product, we can establish a second order equation for unknown
ray parameter t. A second order equation may have zero, one or two real
roots (complex roots have no physical meaning here), which corresponds to
the cases when the ray does not intersect the sphere, the ray is tangent to the
sphere, and when the ray intersects the sphere in two points, entering then
leaning it. From the roots, we need the smallest positive one.

Recall that we also need the surface normal at the intersection point. For a
sphere, the normal is parallel to the vector pointing from the center to the
surface point. It can be normalized, i.e. turned to a unit vector, by dividing
by its length, which equals to the radius of the sphere.



Sphere as Intersectable

struct Intersectable
{
Material* material;
virtual Hit intersect(const Ray& ray)=0;

}:

class Sphere : public Intersectable ({
vec3 center;
float radius;
public:
Hit intersect(const Ray& ray) (..}
}i
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The equation of the sphere is an example of a more general category, the
implicit surfaces that are defined by an implicit equation of the x,y,z
Cartesian coordinates of the place vectors r of surface points. Substituting
the ray equation into this equation, we obtain a single, usually non-linear
equation for the single unknown, the ray parameter t. Having solved this
equation, we can substitute the ray parameter t* into the equation of the ray
to find the intersection point.

The normal vector of the surface can be obtained by computing the gradient
at the intersection point. To prove it, let us express the surface around the
intersection point as a Taylor approximation. f(x*,y*,z*) becomes zero since
the intersection point is also on the surface. What we get is a linear equation
of form n\cdot(r — r0) = 0, which is the equation of the plane, where n=grad
f.

So, the gradient is the normal vector of the plane that approximates the
surface locally in the intersection point.
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The triangle is the most important primitive because we often use it to approximate
arbitrary surfaces. So effective ray-triangle intersection algorithms are still in the focus
of research. Now, we present a very simple algorithm, which is far behind the leading
methods in terms of efficiency.

The algorithm consists of two steps, first the intersection with the plane of the triangle
is found, then we determine whether or not the ray-plane intersection point is inside the
triangle. Suppose that the triangle is given by its vertices rl, r2, r3. The equation of its
plane is n\cdot(r-r0)=0 where n is the normal vector and r0 is a point of the plane. Place
vector r0 can be any of the three vertices and normal vector n can be computed as the
cross product of edge vectors r2-rl and r3-rl. Substituting the ray equation into this
linear equation, we get a linear equation for t, which can be solved. If t is negative, the
intersection is behind the eye, so it must be ignored. The positive t is substituted back to
the ray equation giving p as the intersection with the plane.

Now we should determine whether p is inside the triangle. An edge line separates the
plane into two half planes, a “good” or one (this is the left one if the edge vector points
from r1 to r2) that contains the triangle and the third vertex and a “bad” one that
contains nothing. Point p must be on the good side, i.e. where the third vertex is. Points
on the left and right with respect to edge r1-r2 can be separated using the properties of
the cross product.

Assuming that we look at the plane from above, (r2 - rl) x (p - rl1) will point towards
us if p is on the left, and it will point down if p is on the right.

Asn=(r2-rl) x (r3 - rl) points towards us, we can check whether (r2 - r1) x (p - rl)
has the same direction by computing their dot product and checking if the result is




positive (the dot product of two vectors point into the same direction is positive, the dot
product of two oppositely pointing vectors is negative). A single inequality states that the point

is on the good side with respect to a given edge vector. If this condition is met for all three edge
vectors, the point is inside the triangle.



Ray tracing: Render

Virtual world: eye+window Real world: user+screen

Render()

for each pixel p
Ray r = GetRay( eye = pixel p )
color = trace(ray)
WritePixel(p, color)
endfor

end

On the top level, ray tracing rendering visits pixels one by one. For every
pixel, the virtual camera has a point on its window (in real space we have
the user and the screen; in virtual world one of the user’s eye is the virtual
eye and the display surface is a rectangle). The origin of primary rays is
always the eye position. The direction of a ray is from the eye to the center
of the pixel on the window rectangle, which is calculated by the GetRay
function. With this ray, function Trace is called, which computes the
radiance transferred back by this ray (i.e. the radiance of the point hit by this
ray in the opposite of the ray direction). The radiance on the wavelengths of
r,g,b is written into the current physical pixel.




Kamera: GetRay

Normalizalt eszkoz koordinatak

p = lookat+ a.right + 3 -up, o, Bin[-1,1]
= lookat + (2X/XM-1) right + (2Y/YM-1) -up

Ray dir =p — eye

To implement the GetRay function, the virtual camera should be defined in
the virtual space. The user’s location is specified by the place vector called
eye. The display surface is represented by a 2D rectangle in the virtual
world coordinates. The center of this rectangle is specified by the lookat
point, and its orientation and size are defined by two vectors. Right points
from the center of the window to the right edge, up from the center to the
top edge. If the resolution of the target image is XM x Y M, then the center
of pixel (X,Y) in world coordinates is p = lookat + (2X/XM-1) right +
(2Y/YM-1)-up.




vec3 trace (Ray ray) {

Hit hit = firstIntersect (ray):

if(hit.t < 0) return L,; //nothing

vec3 outRadiance = hit.material->k,*L,;

for (each light source /) {

Ray shadowRay (r +Ng, L) ;

Hit shadowHit = firstlIntersect(shadowRay) ;

if (shadowHit.t < 0 || shadowHit.t > |r-y])
outRadiance += hit.material->shade (N,V.L,L%) ;

Shadow

}

return outRadiance;

}

The trace function gets the ray that involves its origin and direction vectors.
First we compute the intersection that is in front of the eye and is closest to
the eye. The already implemented solution is firstintersect. This function
indicates with a negative value if there is no intersection. In this case, trace
returns with the radiance of the ambient illumination.

If some surface is seen, trace computes the contribution of the abstract light
sources. To check the visibility of a particular light source, a ray, called
shadow ray, is sent from the shaded point towards the light source. If this
ray intersects an object and this intersection is closer than the light source,
the object occludes the light source so this point is in shadow.

If the surface is smooth and is ideally reflective, then the reflection direction
is computed and the trace function is called recursively to compute the
radiance of reflection direction. The same is done for the refraction direction
if the surface is refractive.
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To simulate also smooth surfaces responsible for mirroring and light
refraction, the local illumination model should be extended. When the
surface visible from the eye is identified, we calculate the radiance as the
contribution from abstract light sources but also add the reflection of the
radiance from the ideal reflection direction and the refraction of the radiance
coming from the ideal refraction direction. According physics, the scaling
factors of the radiance values are the Fresnel and 1-Fresnel for reflection
and refraction, respectively. However, we do not always insists of physical
precision so may use other scaling factors that are set by an artist and not
computed as the Fresnel function.

This equation expresses the radiance of a surface point in a given direction
as the function of the direct light sources and the radiance coming from the
ideal reflection and refraction directions. The question is how these extra
terms can be computed.

Let us recognize, that the computation of the radiance delivered back by
reflection and refraction rays is essentially the same computation what we
are doing right now, just the ray origin and direction should be altered. So
the solution of this problem is a recursive function.



trace

vec3 trace (Ray ray) {

\%
Hit hit = firstIntersect(ray):; Lel N
if (hit.t < 0) return L,; //nothing
vec3 outRadiance = hit.material->k, * [, ; ¥
for (each light source /) { : e
Ray shadowRay (r + Nesign(N-V), L)) ; i I-‘l
Hit shadowHit = firstIntersect (shadowRay) ;
if (shadowHit.t < 0 || shadowHit.t > |r-y])
outRadiance += hit.material->shade (N, VL, L%) ;

}
if(hit.material->reflective) {
vec3 reflectionDir = reflect(V,N);
Ray reflectedRay (r + Nesign(N-V), reflectionDir) ;
outRadiance += trace(reflectedRay) *F(V,6N);
}
if (hit.material->refractive) {
vec3 refractionDir = refract(V,N):
Ray refractedRay (r- Nesign(N-V), refractionDir) ;
outRadiance += trace (refractedRay) * (vec3(1,1,1)-F(V,N));
}

return outRadiance;

The trace function gets the ray that involves its origin and direction vectors.
First we compute the intersection that is in front of the eye and is closest to
the eye. The already implemented solution is firstintersect. This function
indicates with a negative value if there is no intersection. In this case, trace
returns with the radiance of the ambient illumination.

If some surface is seen, trace computes the contribution of the abstract light
sources. To check the visibility of a particular light source, a ray, called
shadow ray, is sent from the shaded point towards the light source. If this
ray intersects an object and this intersection is closer than the light source,
the object occludes the light source so this point is in shadow.

If the surface is smooth and is ideally reflective, then the reflection direction
is computed and the trace function is called recursively to compute the
radiance of reflection direction. The same is done for the refraction direction
if the surface is refractive.




trace

vec3 trace(Ray ray, int depth) {
if (depth > maxdepth) return [, ; Le
Hit hit = firstIntersect(ray): 4
if (hit.t < 0) return L,; //nothing
vec3 outRadiance = hit.material->k, *L,; Yi
for (each light source /) { S LI TP,
Ray shadowRay (r + Ngsign(N-V), L)) ;
Hit shadowHit = firstIntersect (shadowRay) ;
if (shadowHit.t < 0 || shadowHit.t > |r-y])
outRadiance += hit.material->shade (N, VL, L%) ;
}
if (hit.material->reflective) {
vec3 reflectionDir = reflect(V,N);
Ray reflectedRay (r + Nesign(N-V), reflectionDir) ;
outRadiance += trace (reflectedRay,depth+1)*F(V,6N);
}
if (hit.material->refractive) {
vec3 refractionDir = refract(V,N):
Ray refractedRay (r- Nesign(N-V), refractionDir) ;
outRadiance += trace (refractedRay,depth+1l)*(vec3(1,1,1)-F(V,N));
}

return outRadiance;

Recursion is a dangerous operation if we cannot make sure that it stops.
Assume, for example, that this ellipsoid is made of glass. The ray is
refracted into the glass and there can be infinite number of reflections on the
internal surface. So our program will surely crash with a stack overflow
message. We should limit the recursion depth for any price. This is possible
with depth parameter, which is incremented in each recursive call. If depth
is greater than the limit, additional calculations are prohibited.




Heckbert Palika hazija a
névjegyeén

typedef struct{double x,y.z} vec:vec U black.amb={.02..02..02}; struct sphere{ vec cen,color:double rad kd.ks.ktkLir}*s.
*best.sph[]={0..6...5.1..1..1..9. .05..2..85.0..1.7.-1..8..-.5.1..5,.2.1...7..3.0...05.1.2.1..8..-.5..1..8..8. 1...3..7.0..0..1.2.3..-6..15..1.,
8.1.7.0..0..0..6,1.5.-3..-3..12..8.1.. 1..5.,0..0..0...5.1.5.};yx: double u.b.tmin sqrt().tan();double vdot(A.B)vec A B:

{retarn AX*B.X+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec AB; {B.x+=a* AxB.yt+=a*A.y;B.z+=a*A.z;return B:}
vee vunit(A)vec A;{return veomb(1./sqrt( vdot(A,A)).A black);}struct sphere *intersect(P.D)vec P.D;{best=0;tmin=1¢30;

s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>07sqrt(u):1e31,u=b-u>
le-7?b-wb+u tmm=u>=1e-7&&u<tmin?best=s,u: tmin;return best;}vec trace(level P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s, *Lif{!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=s->ir,d= -vdot(D,N=vunit(vcomb
(-1.,P=vcomb(imin,D,P),s->cen )));if{d<0)N=vcomb(-1..N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=1 ->kI*vdoi(N,
U=vunit(vcomb(-1.,P,I->cen))))>0& &intersect(P, Uy==l)color=vcomb(e ,l->color,color),U=s->colorcolor.x*=U x;color.y*=
U.ycolor.z*=U.z:e=1-¢eta* eta*(1-d*d);return vcomb(s->kt,e>0race(level,P.vcomb(eta,D,vcomb(eta*d-sqrt (e),N,black))):
black,vcomb(s->ks.trace(level P.vcomb(2¥*d.N.D)),vcomb(s->kd, color,vcomb(s->kLU,black))));}

main() {printf{"%4d %d'\n".32.32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-yx++/32.U.y=32/2/tan(25/114.5915590261).
U=vcomb(255.. trace(3.black.vunit(U)).black).printf{"%.0f %.0f %.0f\n".U);}/*minray!*/
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Obiject oriented decomposition identifies the objects representing the
problem. These objects are defined in an abstract way by specifying what
operations can be executed on these elements.







Inkrementalis 3D képszintézis
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Inkrementalis képszintézis

Sugarkovetés szamitasi idé o«
Pixelszam x Objektumszam x (Fényforras szam+1)

koherencia: oldjuk meg nagyobb egységekre
feleslegesen ne szamoljunk: vagas

transzformaciok: minden feladathoz megfeleld
koordinatarendszert

— vagni, transzformalni nem lehet akarmit: tesszellacio

Ray tracing processes each pixel independently, thus it may repeat
calculations that could be reused in other pixels. Consequently, ray tracing is
slow, it is difficult to render complex, animated scenes with ray tracing at
high frame rates.

The goal of incremental rendering is speed and it sacrifices everything for it.
To obtain an image quickly, it solves many problems for regions larger than
a single pixel. This region is usually a triangle of the scene. It gets rid of
objects that are surely not visible via clipping. Most importantly, it executes
operations in appropriate coordinate systems where this particular operation
is simple (recall that ray tracing does everything in world space). Moving
object from one coordinate system to another requires transformations. As
we cannot transform all types of geometry without modifying the type, we
approximate all kinds of geometry with triangles. This process is called
tessellation.




3D inkrementalis képszintézis
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Incremental rendering is a pipeline of operations starting at the model and
ending on the image. Objects are defined in their reference state. First
surfaces are approximated by triangle meshes. Then the tessellated object is
placed in the world, setting its real size, orientation and position. Here,
different objects, the camera and light sources meet. Ray tracing would
solve the visibility problem here, but incremental rendering applies
transformations to find a coordinate system when it is trivial to decide
whether two points occlude each other, and projection is also simple. This is
the screen coordinate system where rays are parallel with axis z and a ray
has the pixel’s X,y coordinates. To transform the model to screen
coordinates, first we execute the camera transformation which translates and
rotates the scene so that the camera is in the origin and looks at the —z
direction (the negative sign is due to the fact that we prefer right handed
coordinate system here). In the camera coordinate system, projection rays
go through the origin and projection is perspective. To simplify this, we
distort the space and make rays meet in an ideal point at the end of axis z, so
projection rays will be parallel. Clipping is executed here. Finally, we take
into account the real resolution of the image and scale the space accordingly.




Tesszellacio
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The tessellation of a parametric surface basically means the evaluation of
the surface equation in parameter points that are placed regularly by a grid.
Those points form a triangle that are neighbors in parameter space. To
obtain the shading normals, the cross product of the partial derivatives of the
parametric equation is also computed at the sample points.



Parametrikus fellletek normalvektora
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To get the normal vector of a parametric surface, we exploit isoparametric
lines. Suppose that we need the normal at point associated with parameters
u*, v*. Let us keep u* fixed, but allow v to run over its domain. This r(u*,v)
IS a one-variate parametric function, which is a curve. As it always satisfies
the surface equation, this curve is on the surface and when v=v*, this curve
passes through the point of interest. We know that the derivative of a curve
always tangent to the curve, so the derivative with respect to v at v* will be
the tangent of a curve at this point, and consequently will be in the tangent
plane.

Similarly, the derivative with respect to u will always be in the tangent
plane. The cross product results in a vector that is perpendicular to both
operands, so it will be the normal of the tangent plane.




Objektumok az GPU-nak

struct Geometry {
unsigned int vao, nVtx;

Geometry( ) {
glGenVertexArrays(l, &vao);
glBindVertexArray (vao) ;

}

void Draw() {
glBindVertexArray (vao) ;
glDrawArrays (GL_TRIANGLES, 0, nVtx);

}

}i

struct VertexData {
vec3 position, normal;
float u, v;

}:
struct ParamSurface : Geometry {

virtual VertexData GenVertexData(float u, float v) = 0;
void Create(int N, int M);

};

Tessellation is done on the CPU with a C++ program. The tessellated
triangle mesh is copied to the GPU and assigned to a vao (vertex array
object).

The general base class of triangle meshes is the Geometry that stores the vao
and the number of vertices. In its constructor, the vao is generated and is
bound, i.e. is made active. When a Geometry is drawn, the vao is bound
again since other vaos may become active between the construction of this
one and its drawing. Then the vao is drawn stating that its vertices define a
set of triangles where the first three vertices define the first triangle, the
fourth, fifth, sixth the second triangle, etc. Note that this is not the most
efficient way of encoding a triangle mesh since a vertex is stored as many
times as many triangles it participates, but this is the simplest one.

A parametric surface, called ParamSurface is a special type of Geometry,
where Create function creates the vao. During creation we need the equation
of the parametric surface which is different for different types (e.g. sphere,
torus, flag, etc.). So here, we declare GenVertexData as a pure virtual
function, which returns the position, normal and the parameter pair for a
given parameter pair.




Parametrikus feltlet GPU-nak

void ParamSurface: :Create(int N, int M) {
nVtx = N * M * 6;
unsigned int vbo;
glGenBuffers(l, &vbo); glBindBuffer (GL_ARRAY BUFFER, vbo) ;
VertexData *vtxData = new VertexData[nVtx], *pVtx = vtxData;
for (int i 0; i < N; i++) for (int j = 0; j < M; j++) {

*pVtx++ = GenVertexData((float)i / N, (float)j / M);

*pVtx++ = GenVertexData((float) (i + 1) / N, (float)j / M);
*pVtx++ = GenVertexData((float)i / N, (float) (j + 1) / M);
*pVtx++ = GenVertexData((float) (i + 1) / N, (float)j / M);
*pVtx++ = GenVertexData((float) (i + 1) / N, (float)(j + 1) / M);
*pVtx++ = GenVertexData((float)i / N, (float)(j + 1) / M);

}

int stride = sizeof (VertexData), sVec3 = sizeof (vec3);
qlBufferData(GL_ARRAY_BUFFER, nVtx * stride, vtxData, GL_STATIC_pRAW);

glEnableVertexAttribArray(0); // AttribArray 0 = POSITION
glEnableVertexAttribArray(1); // AttribArray 1 = NORMAL
glEnableVertexAttribArray(2); // AttribArray 2 = UV
glVertexAttribPointer (0,3,GL_FLOAT,GL_FALSE,stride, (void*)0) ;
glVertexAttribPointer(1,3,GL_FLOAT,GL_FALSE, stride, (void*) sVec3) ;
glVertexAttribPointer(2,2,GL_FLOAT,GL_FALSE,stride, (void¥*) (2*sVec3)) ;

Recall that we have activated the vao. Now its corresponding data stored in
a single vbo (vertex buffer object) are generated. If the parameter space is
decomposed to N columns and M rows, then we have N * M quads. A single
quad is composed by two triangles, each having three vertices. Thus the
number of vertices isN * M * 6.

The vbo is generated and bound, then it is filled up by calling the
GenVertexData virtual function of the vertices of the triangles.

In the GPU, vertex shader input register #0 will get the position (3 floats),
#1 the normal (3 floats), and #2 the u,v parameter pair (2 floats).




GOmb

class Sphere : public ParamSurface {
vec3 center;
float radius;
public:
Sphere (vec3 c, float r) : center(c), radius(r) {
Create (16, 8); // tessellation level

}

VertexData GenVertexData(float u, float v) {

VertexData vd;

vd.normal = vec3(cos(u*2*M PI) * sin(v*M PI),
sin(u*2*M PI) * sin(v*M PI),
cos (v*M_PI)) ;

vd.position = vd.normal * radius + center;

vd.u = u; vd.v = v;

return vd;

The construction of a parametric surface is general, the only specific thing is
the GenVertexData. So, if we derive a Sphere class from ParamSurface, this
virtual function should be implemented according to the equations of the
sphere.




Zaszlo
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Another example is the waving flag, which is a rectangle that is modulated
by a sine wave. As we stated, the normal vector is the cross product of the
partial derivatives.



Zaszlo

class Flag : public ParamSurface {
float W, H, D, K, phase;
public:
Flag(float w, float h, float d, float k, float p)
: W(w), H(h), D(d), K(k), phase(p) {
Create (60, 40); // tessellation level

}

VertexData GenVertexData (float u, float v) {
VertexData vd;
float angle = u * K * M PI + phase;
vd.position = vec3(u * W, v * H, sin(angle) *D) ;

vd.normal = vec3(-K * M PI * cos(angle) * D, 0, W);

vd.u = u; vd.v = v;




Transzformaciok

Modellezési transzformacio:
[l‘, l] TModel - [rworld’ l]
-1
[N,O] (TModcl)T = [Nworlds d]

Kamera transzformacio:
[rw01'lcl91 ] TView - [rcameras 1 ]

Perspektiv transzformacio:
[rcamcra= 1] TPC[’SP - [rscrccnhﬂ h]

MVP transzformacio: Tyjoge/Tview Tpersp = Tamve

Using the modeling transformation, the object is mapped to world
coordinates. Recall that the transformation of the shading normals requires
the application of the inverse-transpose of the 4x4 matrix, or if the normal is
a part of a column vector, we should multiply it with the inverse.

From world coordinates, we go to camera space, where the camera is at the
origin and looks at the —z direction. The transformation between world and
camera coordinates is a translation and a rotation.

After camera transformation, the next step is perspective transformation,
which distorts the objects in a way that the original perspective projection
will be equivalent to the parallel projection of the distorted objects. This is a
not-affine transformation, so it will not preserve the value of the fourth
homogeneous coordinates (which has been 1 so far).

The three transformation matrices (model, camera, perspective) can be
concatenated, so a single composite transformation matrix takes us from the
reference state directly to normalized screen space.




Modellezési transzformacio

1. skalazas:  sx, sy, sz
2. orientacid:  wx, wy, wz, o
3. pozicid:  px, py, pz

sy R 1
+ I l
I L px py pz 1

r’= rcos(o)+w(r-w?)(1-cos(o))+w'xr sin(c)

Modeling transformation sets up the object in the virtual world. This means
scaling to set its size, then rotation to set its orientation, and finally
translation to place it at its position. All three transformations are affine and
can be given as a homogeneous transformation matrix. Concatenating the
matrices, we obtain a single modeling transformation matrix, which maps
the object from its reference state to its actual state.




Ax4-es matrix

struct matd {
float m[4] [4];
matd (float m00,.., float m33) { .. }
matd4 operator* (const matd4& right);

void SetUniform(unsigned shaderProg, char * name) ({
int loc = glGetUniformLocation (shaderProg, name) ;
glUniformMatrix4fv(loc, 1, GL_TRUE, &m[0][0]);

}i
mat4 Translate (float tx, float ty, float tz) {

return mat4 (1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 3 b 0,
tx, ty, tz, 1);

}
matd4 Rotate(float angle,float wx,float wy,float wz) {..}

matd4 Scale(sx, sy, sz) {..}

On the CPU side, we need a mat4 class to handle matrices (on the GPU side
we program in GLSL where this is already a built in type). We need to
construct the 4x4 matrix and implement the matrix multiplication for
concatenation. As we already have formulae for translation, rotation,
scaling, the corresponding matrices can easily be given.




Nézeti

téglalap Kamera modell

Mi: Camera obscura

The definition of the camera transformation depends on the parameters of
the camera. In computer graphics the camera is the eye position that
represents the user in the virtual world and a window rectangle that
represents the screen.

It is often more intuitive to think of a virtual camera as being similar to a
real camera. A real camera has a focus point or pin-hole, where the lens is,
and a planar film were the image is created in a bottom-up position. In fact,
this model is equivalent to the model of the user’s eye and the screen, just
the user’s eye should be imagined in the lens position and the film mirrored
onto the lens as the screen.

So in both cases, we need to define a virtual eye position and a rectangle in
3D. The eye position is a vector in world coordinates. The position of the
window is defined by the location of its center, which is called lookat point
or view reference point. We assume that the main viewing direction that is
between the eye and the lookat positions is perpendicular to the window. To
find the vertical direction of the window, a view up (vup) vector needs to be
specified. If it is not exactly perpendicular to the viewing direction, then
only its perpendicular component is used.




The vectors defined so far specify the window plane and orientation, but not the
size of the rectangle. To set the vertical size, the field of view angle (fov) is given.
For the horizontal size, the aspect ratio of the vertical and horizontal window edge
sizes should be specified.

Obijects being very close to the eye are not visible and leads to numerical
inaccuracy. So we also set up a front clipping plane that is parallel to the window
and ignore everything that is behind this plane. Similarly, objects that are very far
are not visible and may lead to numerical representation problems. So we also
introduce a back clipping plane to limit the space for the camera.



Vilagbol a képernydre
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Our goal is to transform the scene from world coordinates to screen
coordinates, where visibility determination and projection are trivial. This
transformation is built as a sequence of elementary transformations because
of pedagogical reasons, but we shall execute all transformations at once, as
a single matrix-vector multiplication.




View transzformacio
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First we apply a transformation for the scene, including objects and the
camera, that moves the camera to the origin and rotates it to make the main
viewing be axis —z and the camera’s vertical direction be axis y. To find
such transformation, we assign an orthonormal basis to the camera so that
its first basis vector, u, is the camera’s horizontal direction, the second, v, is
the vertical direction, and the third, w, is the opposite of the main viewing
direction (we reverse the main viewing direction to maintain the right
handedness of the system).

\ector w can be obtained from the main viewing direction by a simple
normalization. The application of normalization to get v from vup is also
tempting, but simple normalization would not guarantee that basis vector v
is orthogonal to basis vector w. So instead of directly computing v from vup,
first we obtain u as a vector that is orthogonal to both w and vup. Then, v is
computed indirectly through w and u to make it orthogonal to both of them.

The transformation we are looking for is a translation then a rotation. The
translation moves the eye position to the origin. The translation has a simple
homogeneous linear transformation matrix. Having applied this translation,
the orientation should be changed to align vector w with axis z, vector v




with axis y, and vector u with axis x. Although this transformation is non-trivial, its
inverse that aligns axis x with u, axis y with v, and axis z with w is straightforward.

Its basic idea is that the rows of an affine transformation (fourth column is
[0,0,0,1]7) are the images of the three basis vectors and the origin respectively.

So, the transformation of x,y,z axes to u,v,w is the matrix that contains u,v,w as the
row vectors of the 3x3 minor matrix of the 4x4 transformation matrix.

As we need the inverse transformation, this matrix needs to be inverted. Such
matrices — called orthonormal matrices — are easy to invert, since their transpose is
their inverse.



Latdszog normalizalas
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In camera space, the camera is in the origin and the main viewing direction
is axis —z. The normalization step distorts the space to make the viewing
angle be equal to 90 degrees. This is a scaling along axes y and x.
Considering scaling along axis y, before the transformation the top of the
viewing pyramid has y coordinate bp-tg(fov/2), and we expect it to be bp.
So, y coordinates must be divided by tg(fov/2). Similarly, x coordinates must

be divided by tg(fov/2)-asp.



Normalizalas utani
perspektiv transzformacio
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Perspective transformation makes the rays meeting in the origin be parallel
with axis z, 1.e. meeting in infinity (an ideal point at the “end” of axis z).

Additionally, we expect the viewing frustum to be mapped to an axis
aligned cube of corner points (-1,-1,-1) and (1,1,1). There are infinitely
many solutions for this problem. However, only that solution is acceptable
for us which maps lines to lines (and consequently triangles to triangles)
since when objects are transformed, we wish to execute the matrix vector
multiplication only for the vertices of the triangle mesh and not for every
single point (there are infinite of them). Homogeneous linear
transformations are known to map lines to lines, so if we can find a
homogeneous linear transformation that does the job, we are done. To find
the transformation matrix, we consider how a ray should be mapped. A ray
can be defined by a line of explicit equation

X=-Mxz, y=-myz

where coordinate z is a free parameter (mx and my are the slopes of the
line). In normalized camera space the slopes are between -1 and 1. We
expect this line to be parallel with axis z* after the transformation (z* is the
transformed z to resolve ambiguity), so its x and y coordinates should be
independent of z.

As X, y must also be in [-1,1], the transformed line is




X* =mx, y*=my,
and z* is a free parameter.

The mapping from (x,y,z) = (-mx-z, -my-z, z) to (x*,y*,z*)=(mx, my, z*) cannot be
linear in Cartesian coordinates, but is linear (we hope) in homogeneous
coordinates. So, we are looking for a linear mapping from [x,y,z,1] =[-mx-z, -my-z,
z, 1] to [x*,y*,z*,1]=[mx, my, z*, 1] . To make it simpler, we can exploit the
homogeneous property, i.e. the represented point remains the same if all
coordinates are multiplied by a non-zero scalar. Let this scalar be -z. So our goal is
to find a linear mapping from [x,y,z,1] =[-mx-z, -my-z, z, 1] to to [x*y*,z*,1] ~ [-
mx-z, -my-z, -z:z*, -ZJ.



Perspektiv transzformacio
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A homogeneous linear transformation is a 4x4 matrix, i.e. sixteen scalars,
which need to be found. The requirement is that for arbitrary mx, my, z,
when multiplying with [-mx-z, -my-z, z, 1], the result must be [-mx-z, -my-z,
-z:z*, -z]. The first two elements are kept for arbitrary mx, my, z, which is
possible if the first two colums of the matrix are [1,0,0,0] and [0,1,0,0]. As
mx and my do not affect the third and the fourth elements in the result, the
corresponding matrix element must be zero. The fourth element of the result
is —z, so the fourth column is [0,0,-1, 0]. We are left with only two unknown
parameters alpha and beta. They can be found by considering the
requirements that the entry point that is the intersection of the ray and the
front clipping plane is mapped to z*=-1 and the exit point to z*=1.




Z-fighting
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Note that the expression of z* as a function of z is not a linear (which we
knew from the very beginning), but a reciprocal function. Recall that this
1/x function changes quickly where x is small but will be close to constant
where x is large. Value z* is used to determine visibility. To determine
visibility robustly, the difference of z* for two points must be large enough
(otherwise comparison fails due to numerical inaccuracies and number
representation limitations). This is not the case if gis small and z is large,
e.g. when z=-bp approximately, i.e. when g/z=2fp/(bp-fp). If bp is much
greater than fp, then

Plz=2fpl(bp-fp) ~2fp/bp is very small, prohibiting to robustly distinguish
two occluding surfaces.

Never specify fp and bp such that fp/bp is too small (e.g. less than 0.01). If
you do, occluded surfaces will randomly show up because of numerical
inaccuracy. This phenomenon is called z-fighting.
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Perspektiv torzitas

Normalization and perspective transformation are usually combined and the
composed transformation is set directly.

It is worth noting that this transformation sets the fourth homogeneous
coordinate to the camera coordinate depth value. It is also notable that this
transformation maps the eye ([0,0,0,1] in homogeneous coordinates) to the
ideal point of axis z, i.e. to [0,0, -2fp -bp/(bp-fp), 0] ~[0,0, 1, O].




s1aes Camera ( CAMera osztaly

vec3 wEye, wLookat, wVup;
float fov, asp, fp, bp;
public:

matd V() { // view matrix
vec3 w = (wEye - wLookat) .normalize() ;
vec3 u = cross (wVup, w).normalize();
vec3 v = cross(w, u);
return Translate (-wEye.x, -wEye.y, -wEye.z) *

matd(u.x, v.x, w.x, 0.0f,

u.y, v.y, w.y, 0.0f,
u.z, v.z, w.z, 0.0f,
0.0£, 0.0f£, 0.0£, 1.0f )

}
matd4d P() { // projection matrix
float sy = 1/tan(fov/2);
return mat4d(sy/asp, 0.0£, 0.0f, 0.0f,
0.0f, sy, 0.0f, 0.0f,
0.0£, 0.0f, -(fp+bp)/(bp - fp), -1.0f,
0.0f£, 0.0f£, -2*fp*bp/(bp - fp), 0.0f);

}:

Our 3D Camera class stores parameters need to define a camera, and
implement two transformation functions. Transformation V is the view
transformation that takes a point form world space to camera space, and
transformation P is the projection or perspective transformation that takes a
point from camera space to normalized device space.




const char *vertexSource = R"(

s el Rl Transzformaciok
in vec3 vtxNorm;
out vec4 color; a GPU_n

void main() {
gl_Position = vec4(vtxPos, 1) * MVP;
vec4 wPos = vecd (vtxPos, 1) * M;
vec4 wNormal = Minv * vec4 (vtxNorm, 0) ;
color = Illumination(wPos, wNormal) ;
9 I
void Draw() {
mat4 M = Scale(scale.x, scale.y, scale.z) *
Rotate (rotAng, rotAxis.x, rotAxis.y, rotAxis.z) *
Translate (pos.x, pos.y, pos.z);
mat4 Minv = Translate(-pos.x, =-pos.y, =-pos.z) *
Rotate (-rotAngle, rotAxis.x, rotAxis.y, rotAxis.z) *
Scale(l/scale.x, 1/scale.y, 1/scale.z);
mat4d MVP = M * camera.V() * camera.P();

M.SetUniform(shaderProg, “M”);
Minv.SetUniform(shaderProg, “Minv”) ;
MVP. SetUniform(shaderProg, “MVP”) ;

glBindVertexArray (vao) ;
glDrawArrays (GL_TRIANGLES, 0, nVtx);

Transformations are set on the CPU side but are applied to points by the
GPU. Transformations are uniform variables of the vertex shader, which are
set from the CPU program and used by the vertex shader. We always need
the MVP, i.e. model-view-projection transformation that is the
concatenation of the modeling transformation and the two phases of the
camera transformation. If illumination is also computed in world coordinate
system, object should also be transformed there. For points, we need the
modeling transformation M, for normal vectors its inverse. Note that normal
vectors stand on the right side of the matrix, i.e. they form column vectors.




KEpSZIﬂtE‘ZIS [X(1) ., Y(t) . (). h(D)]=

A A (X, ¥,.Z, ]t +
csOvezetek Dt
Szakasz e
csticspontok primitivek

Rasztertar:
XY

L L LI
"

T

I

Clipping must be done before the homogeneous division, preferably in a
coordinate system where it is the simplest. The optimal choice is the
normalized device coordinates where the view frustum is a cube. However,
clipping must be done before the homogeneous division. This might be
surprising but becomes clear if we consider the topology of a projective line
and the interpretation of a line segment. A projective line is like a circle, the
ideal point attaches the two “endpoints”. As on a circle, two points do not
unambiguously identify an arc (there are two possible arcs), on a projective
line, two points may define two complementer “line segments” (one of them
looks as two half lines). To resolve this ambiguity, we specify endpoints
with positive fourth homogeneous coordinates, and define the line segment
as a convex combination of two endpoints. If fourth coordinates h are
positive for both end points, then the interpolated h cannot be zero, so this
line segment does not contain the ideal point (it is a “normal line segment”).
Affine transformations usually do not alter the fourth homogeneous
coordinate, so “normal line segments” will remain normal.

Perspective transformation may map a line segment to a line segment that
contains the ideal point, which is clearly indicated in the different signs of
the fourth homogeneous coordinates of the two endpoints. So, if the two h
coordinates have the same sign, then the line segment is normal. If the two h




coordinates have different sign, then the line segment is wrapped around (it
contains the ideal point so we would call it two half lines and not a line segment).

One way to solve this problem is to clip away everything that is behind the front
clipping plane. This clipping must be executed before the homogeneous division
since during this operation we lose the information regarding the sign of the fourth
homogeneous coordinate.



Vagas homogén koordinatakban
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In Cartesian coordinates the limits of the viewing frustum are -1 and 1 in all
three coordinates. As the clipping operation will be executed in
homogeneous coordinates, we should find the equation of the viewing
frustum in homogeneous coordinates. Substituting Cartesian coordinate X
by Xh/h, etc. these equations can be obtained. To make it simpler we wish to
multiply both sides by h. However, an inequality cannot be multiplied by an
unknown variable since should this variable be negative, the relations must
be negated. So we add requirement h>0 which means that the volume must
be in front of the eye. Note that this fact is due to the specific selection of
the perspective transformation matrix. If h is surely positive, we can safely
multiply the inequalities by h.

The collection of six inequalities defines a cube. A point is inside the cube if
all inequalities are met.

To make trivial things complicated, we can also imagine that instead of
clipping on a cube, we clip onto 6 half-spaces one after the other. The
intersection of these half-spaces is the cubical view frustum. Each half space
is associated with a single inequality and the border plane of the half-space
is defined by the equation where < is replaced by =. The advantage of this




approach is that when more complex objects (like lines or polygons) are clipped,
the fact that the vertices are outside the cube provides no information whether the
line or polygon overlaps with the clipping region.

However, if both endpoints of a line are outside of the half-space, then the line
segment is totally out. If both endpoints are in, then the line segment is totally in.
When one is out while the other is in, the intersection of the boundary plane and
the line segment should be computed, and the outer point should be replaced by
the intersection.
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So line clipping is executed 6 times for the half-spaces. We consider here
just one half-space of inequality X, < h, whose boundary is the plane of
equation X, = h . The half-space inequality is evaluated for both endpoints.
If both of them are in, the line segment is completely preserved. If both of
them are out, the line segment is completely ignored. If one is in and one is
out, we consider the equation of the boundary plane (X;, = h ), and the
equation of the line segment (a line segment is the convex combination of
its two endpoints), and solve this for unknown combination parameter t.
Substituting the solution back to the equation of the line segment, we get the
homogeneous coordinates of the intersection point. This intersection point
replaces the endpoint that has been found outside.




Takaras +

« Képernyd koordinatarendszerben ==
— vetitGsugarak a z tengellyel parhuzamosak!

* Objektumtér algoritmusok (folytonos):

— lathatdsag szamitas nem fligg a felbontastol
» Képtér algoritmusok (diszkrét):

— mi latszik egy pixelben

— Sugarkovetes ilyen volt!

What we need is solid rendering which renders filled polygons and also
considers occlusions. Many polygons may be mapped onto the same pixel.
We should find that polygon (and its color), which occludes the others, i.e.
which are the closest to the eye position. This calculation is called visibility
determination.

We have to emphasize that visibility is determined in the screen coordinate
system where rays are parallel with axis z and the x, y coordinates are the
physical pixel coordinates. We made all the complicated looking
homogeneous transformations just for this, to calculate visibility and
projection in a coordinate system where these operations are simple.

There are many visibility algorithms (from which we shall discuss only 1.5
:-). The literature classifies them as object space (aka object precision or
continuous) and screen space (aka image precision or discrete). Object space
visibility algorithms find the visible portions of triangles in the form of
(possibly clipped and subdivided) triangles, independently of the resolution
of the image. Screen space algorithms exploit the fact that the image has
finite precision and determine the visibility just at finite number of points,
usually through the centers of the pixels. Recall that ray tracing belongs to




the category of image precision algorithms.
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First an object space method is presented, which gives only partial solution.

Assume that the triangle mesh is the boundary of a valid 3D object! In this
case, we can see only one side or face of each boundary polygon. The
potentially visible face is called front-face, the other face or side where the
polygon is ”glued” to its object is called back-face. A back-face is never
visible since the object itself always occludes it. So, when a polygon shows
its back-face to the camera, we can simply ignore it since we know that
there are other polygons of the same object, which will occlude it. To help
the determination whether a face is front or back, we use a coding scheme
that must be set during the modeling of the geometry (or during
tessellation). In theory, triangle or polygon vertices can be specified either in
clock-wise or counter-clock-wise order. Let us use this ordering to indicate
which face is glued to the object. For example, we can state that vertices
must be specified in clock-wise order when the object is seen from outside,
i.e. when we see the front-face of the polygon. Computing a geometric
normal with n = (ry - r;)x(r, - ry), the clock-wise order means that n points
towards the viewer. As in screen coordinates the viewing rays are parallel
with axis z, it is easy to decide whether a vector points towards the viewer,
simply the z coordinate of n must be negative.




With back-face culling, we can get rid of the surely non-visible polygons, which
always helps. However, front-faces may also occlude each other, which should be
resolved by another algorithm. Still, back-face culling is worth applying, since it
roughly halves the number of the potentially visible polygons.



Z-buffer algoritmus
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And now let us meet the far most popular visibility algorithm of incremental
image synthesis.

Ray tracing considers pixels one by one and for a single pixel, it checks
each object for intersection while always keeping the first intersection found
so far.

In incremental rendering, we would like to exploit the similarities of
different points on an object (on a triangle), so instead of processing every
pixel independently, we take an object centric approach. Let us swap the
order of the for loops of ray tracing and take triangles one by one and for a
single triangle, find visibility rays intersecting it, always keeping the first
intersection in every pixel.

As all pixels are processed simultaneously, instead of a single minimum ray
parameter, we need to maintain as many ray parameters as pixels the
viewport has. In screen coordinates, the ray parameter, i.e. the distance of
the intersection, is represented by the z coordinate of the intersection point.
Therefore, the array storing the ray parameters of the intersections is called
the z-buffer or depth buffer.




The z-buffer algorithm initializes the depth buffer to the largest possible value,
since we are looking for a minimum. In screen coordinates, the maximum of z
coordinates is 1 (the back clipping plane is here). The algorithm takes triangles
one-by-one in an arbitrary order. A given triangle is projected onto the screen and
rasterized, i.e. we visit those pixels that are inside the triangle’s projection (this
step is equivalent to identifying those rays which intersect the given object). Ata
particular pixel, the z coordinate of the point of the triangle visible in this pixel is
computed (this is the same as ray triangle intersection), and the triangle’s z
coordinate is compared to the z value stored in the z buffer at this pixel. If the
triangle’s z coordinate is smaller, then the triangle point is closer to the front
clipping plane at this pixel than any of the triangles processed so far, so the
triangle’s color is written into the frame buffer and its z coordinate to the depth
buffer. Thus, the frame buffer and the depth buffer always store the color and depth
of that triangles which are visible from the triangles processed so far.
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Projected triangles are rasterized by visiting scan lines (i.e. rows of pixels)
and determining the intersection of this horizontal line and the edges of the
triangle. Pixels of X coordinates that are in between the X coordinates of the
two edge intersections are those where the triangle is potentially visible.

Pixels in this row are visited from left to right, and the z coordinate of the
triangle point whose projection is this pixel center is calculated. This z
coordinate is compared to the value of the depth buffer.

The first question is how the Z coordinates of the triangle points are
computed for every pixel of coordinates X and Y. The triangle is on a plane
so X, Y, Z satisfy the plane equation, i.e. a linear equation, so Z will also be
a linear function of pixel coordinates X and Y. The evaluation of this linear
function requires two multiplications and two additions, which are too much
if we have just a few nanoseconds for this operation. To speed up the
process, the incremental principle can be exploited. As we visit pixels in
the order of coordinate X, when a pixel of coordinates X+1,Y is processed,
we have the solution, Z, for the previous pixel. It is easier to compute only
the increment than obtaining Z from scratch. Indeed, the difference between
Z(X+1,Y) and Z(X,Y) is constant so the new depth can be obtained from the
previous one as a single addition with a constant.




Z-interpolacios hardver
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Such an incremental algorithm is easy to be implemented directly in
hardware. A counter increments its value to generate coordinate X for every
clock cycle. A register that stores the actual Z coordinate in fixed point, non-
integer format (note that increment a is usually not an integer). This register
Is updated with the sum of its previous value and a for every clock cycle.
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The final problem is how Z increment a is calculated. One way of
determining it is to satisfy the interpolation constraints at the three vertices.

The other way is based on the recognition that we work with the plane
equation where X,Y,Z coordinates are multiplied by the coordinates of the
plane’s normal. The normal vector, in turn, can be calculated as a cross
product of the edge vectors.

Note that the coordinates of the screen space normal are needed not only
here, but also in back-face culling. So, triangle set up is also responsible for
the front-face, back-face classification.




Takaras OpenGL-ben

int main(int argc, char * argv[]) {

glutInitDisplayMode (GLUT RGBA | GLUT_ DOUBLE |
GLUT_DEPTH) ;

glEnable (GL_DEPTH_TEST); // z-buffer is on

glDisable (GL_CULL_FACE); // backface culling is off

}

void onDisplay () {
glClear (GL_COLOR_BUFFER BIT | GL_DEPTH_BUFFER_BIT);

rajzolas..

glutSwapBuffers() ; // exchange the two buffers




Arnyalas
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* Koherencia: ne mindent pixelenként

* Csucspontonként:
beltlaz L ,szin” interpolacidja:
Gouraud arnyalas (per-vertex shading)

* Pixelenként:
belil a Normal (View, Light) vektort interpolaljuk:

Phong arnyalas (per-pixel shading)

When a triangle point turns out to be visible (at least among the triangles
processed so far), its color should be computed and written into the frame
buffer.

According to optics, the color is the radiance calculated in the direction of
the eye, which is the sum of the contributions of abstract light sources in the
local illumination model. For a single light source, the radiance is the light
source intensity times the BRDF times the geometry factor.

In incremental rendering, we try to reuse calculation done in other pixels, so
the evaluation of this formula for different pixels shares computations.

For example, we can evaluate this illumination formula only for the three
vertices and apply linear interpolation in between the vertices (Gouraud
shading or per-vertex shading).

Or, while the illumination formula is evaluated at every pixel, the vectors
needed for the calculation are interpolated from the vectors available at the
vertices (Phong shading or per-pixel shading).



Per-vertex (Gouraud) arnyalas
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(per-vertex shading)

The radiance can be computed in world coordinates since here we have
everything together needed by the illumination calculation, including the
illuminated objects, light sources, and the camera. Alternatively, radiance
can also be computed in camera space since the illumination formula
depends on angles (e.g. between the illumination direction and the surface
normal) and distances (in case of point light sources), and the transformation
between world space and camera space is angle and distance preserving
(congruence), so we obtain the same results in the two coordinate systems.
However, radiance computation must not be postponed to later stages of the
pipeline (e.g. normalized camera space, normalized device space, or screen
space) since the mapping to these coordinate systems may modify angles.

After tessellation, the object is a set of triangles with vertices and shading
normals. These are transformed to world space (or to camera space) by
multiplying the vertices by the modeling transform (or by the modeling and
camera transforms) and the normals by the inverse-transport of this matrix.

In this space, the view and light directions are computed at the triangle
vertices. If per-vertex shading is applied, these vectors are immediately
inserted into the illumination formula obtaining the reflected radiance at the




vertices. The triangle vertices with their computed colors are mapped to screen
space, where rasterization takes place. The color of the internal pixels is computed
by linear interpolation of the r,g,b values of the colors at the vertices. This is very
similar to the interpolation of depth values.



Per-vertex shading: Vertex shader

uniform mat4 MVP, M, Minv; // MVP, Model, Model-inverse

uniform vecd kd, ks, ka; // diffuse, specular, ambient ref
uniform vecd La, Le; // ambient and point sources
uniform vec4d wLiPos; // pos of light source in world
uniform vec3 wEye; // pos of eye in world

uniform float shine; // shininess for specular ref

in vec3 vtxPos; // pos in modeling space

in vec3 vtxNorm; // normal in modeling space

out vecd color; // computed vertex color

void main() {
gl Position = vecd (vtxPos, 1) * MVP; // to NDC

vecd wPos = vecd (vtxPos, 1) * M;

vec3 L = normalize( wLiPos.xyz/wLiPos.w - wPos.xyz/wPos.w) ;
vec3 V = normalize (wEye * wPos.w - wPos.xyz);

vec4d wNormal = Minv * vecd (vtxNorm, 0);

vec3 N = normalize (wNormal.xyz) ;

vec3 H = normalize(L + V) ;

float cost = max(dot(N, L), 0), cosd = max(dot(N, H), 0);
color = ka * La + (kd * cost + ks * pow(cosd, shine)) * Le;




Per-vertex shading: Pixel shader

in vec4 color; // interpoclated color of vertex shader
out vecd4 fragmentColor; // output goes to frame buffer

void main() {
fragmentColor = color;

}
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Gouraud shading produces satisfactory results if the surfaces are finely
tessellated and not strongly glossy or specular. If the triangles are large and
the material is highly specular, the highlights will be strangely deformed
revealing the underlying triangular approximation. The problem is that
glossy reflection is strongly non-linear, which cannot be well represented by
linear interpolation.



Per-pixel (Phong) arnyalas
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The solution to this problem is Phong shading, which interpolates only those
variables which are smoothly changing inside a triangle. Phong shading
interpolates the vectors (normal, view, and illumination) and evaluates the
radiance from the interpolated vectors at each pixel.

The triangle vertices and their shading normals are transformed to world
space (or camera space). Here, illumination and view directions are obtained
for each vertex. The vertices are transformed further to screen space, and the
computed normal, illumination and view directions will follow them, but
without any transformation (they still represent world (or camera) space
directions). These vectors are linearly interpolated inside the triangle and for
every pixel, the radiance is obtained.




Per-pixel shading: Vertex shader

uniform mat4 MVP, M, Minv; // MVP, Model, Model-inverse

uniform vec4 wLiPos; // pos of light source
uniform vec3 wEye; // pos of eye

in vec3 vtxPos; // pos in modeling space

in vec3 vtxNorm; // normal in modeling space
out vec3 wNormal; // normal in world space
out vec3 wView; // view in world space

out vec3 wLight; // light dir in world space

void main() {

gl _Position = vecd (vtxPos, 1) * MVP; // to NDC

vecd wPos = vecd (vtxPos, 1) * M;

wLight = wLiPos.xyz * wPos.w - wPos.xyz * wLiPos.w;
wView wEye * wPos.w - wPos.xyz;

wNormal (Minv * vec4 (vtxNorm, 0)) .xyz;




Per-pixel shading: Pixel shader

uniform vec3 kd, ks, ka;// diffuse, specular, ambient ref

uniform vec3 La, Le; // ambient and point source rad
uniform float shine; // shininess for specular ref

in vec3 wNormal; // interpolated world sp normal

in vec3 wView; // interpolated world sp view

in vec3 wlight; // interpolated world sp illum dir

out vecd4 fragmentColor; // output goes to frame buffer

void main() {

vec3 N = normalize (wNormal) ;
vec3 V = normalize (wView) ;
vec3 L = normalize (wLight) ;
vec3 H = normalize(L + V) ;
float cost = max(dot(N,L), 0), cosd = max(dot(N,H), 0);
vec3 color = ka * La +
(kd * cost + ks * pow(cosd,shine)) * Le;
fragmentColor = vec4 (color, 1);




Gouraud

Gouraud

versus Phong




NPR: Non-Photorealistic Rendering

uniform vec3 kd; // diffuse ref
in vec3 wNormal, wView, wLight; // interpolated
out vecd fragmentColor; // output goes to frame buffer

void main() {
vec3 N = normalize (wNormal) ;
vec3 V normalize (wView) ;
vec3 L normalize (wLight) ;

float y = (dot(N, L) > 0.5) 2 1 : 0.5;
if (abs(dot(N, V)) < 0.2) fragmentColor = vec4(0, 0, 0, 1);
else fragmentColor =

vecd(y * kd, 1);







Bump/displacement mapping




Textura leképzés:
anyagjellemzék valtoznak a fellleten

So far, we assumed that material properties are constant on a surface, i.e.
inside a triangle. Texture mapping eliminates this restriction and makes
material properties varying on the surface.




Texturazas
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2D texture mapping can be imagined as wallpapering. We have a wallpaper
that defines the image or the function of a given material property. This
image is defined in texture space as a unit rectangle. The wallpapering
process will cover the 3D surface with this image. This usually implies the
distortion of the texture image. To execute texturing, we have to find a
correspondence between the 3D surface and the 2D texture space. After
tessellation, the 3D surface is a triangle mesh, so for each triangle, we have
to identify a 2D texture space triangle, which will be painted onto the 3D
triangle. The definition of this correspondence is called parameterization.

A triangle can be parameterized with an affine transformation (x,y,z are
linear functions of u, v). Screen space coordinates are obtained with
homogeneous linear transformation from x,y,z. Thus the mapping between
texture space and screen space is also a homogeneous linear transformation:

[X:h, Y-h, h] = [u,v,1] - T, where X,Y are the pixel coordinates, h = -zc, the
negative camera space z coordinate.

The triangle is rasterized in screen space. When a pixel is processed, texture
coordinate pair u,v must be determined from pixel coordinates X,Y.




Perspektiva helyes texturazas
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The correct solution is homogeneous linear interpolation, aka perspectively
correct texture mapping, which linearly interpolates u/h, v/h, and 1/h and
obtains u,v as two per-pixel divisions. Current GPUs do this perspectively
correct interpolation automatically.




Textura szdrés

Textlra tér Képtér

Rasterization visits pixels inside the projection of the triangle and maps the
center of the pixel from screen space to texture space to look up the texture
color. This mapping will result in a point that is in between the texel centers.
More importantly, this mapping may be a magnification, which means that a
single step in screen space results in a larger step in texture space, so we
may skip texels, and the result will be a mess or noise.

From signal processing point of view, in this case, the texture is a high
frequency signal which is sampled too rarely, resulting in sampling artifacts.




Texturatér és képtér kapcsolata

Magnification Minification




Mip-map (multum in parvo)
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The solution for such sampling problems is filtering. Instead of mapping just
the center of the pixel, the complete pixel rectangle must be mapped to
texture space at least approximately, and the average of texels in this region
should be returned as a color. However, it would be two time consuming.

One efficient approximation is to prepare the texture not only in its original
resolution, but also in half resolution, quarter resolution, etc. where a texel
represents the average color of a square of the original texel. During
rasterization, OpenGL estimates the magnification factor, and looks up the
appropriate version of filtered, downsample texture. The collection of the
original and downsampled textures is called mip-map.




Mip-map is van: ©
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glTexParameteri (GL_TEXTURE_ 2D,
GL _TEXTURE MIN FILTER, GL NEAREST) ;
glTexParameteri (GL_TEXTURE 2D,
GL_TEXTURE_MAG_FILTER, GL_LINEAR) ;

If we do not like to prepare our texture with reduced resolution, there is
another simpler filtering scheme. When a pixel center is mapped to texture
space, not only the closest texel is obtained but the four closest ones, and the
filtered color is computed as the bi-linear interpolation of their colors.

The filtering method can be set separately when the pixel to texture space is
a magnification or when it is a minification.




Textura szlrési modok
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Texturazas

Texture

Sampler

Shader
processor

struct Texture ({
unsigned int textureld;
Texture (char * fname) {

glGenTextures (1, &textureld) ;

glBindTexture (GL_TEXTURE 2D, textureld);

int width, height;

float *image = LoadImage (fname ,width, height); // megirni!

// binding

ngexImage2D(GL_TEXTURE_ZD, 0, GL_RGB, width, height,
0, GL_RGB, GL FLOAT, image); //Texture => OpenGL

glTexParameteri (GL_TEXTURE 2D, GL_ TEXTURE_MIN FILTER, GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE MAG_FILTER, GL_NEAREST) ;

void Geometry::Draw( ) {
int samplerUnit = 0;

int location = glGetUniformLocation(shaderProg,
glUniformli (location, samplerUnit) ;

glActiveTexture (GL_TEXTUREO + samplerUnit) ;
glBindTexture (GL_TEXTURE 2D, texture.textureld);

glBindVertexArray (vao) ; glDrawArrays (GL_TRIANGLES, 0, nVtx);

"samplerUnit") ;




Vertex és Pixel Shader

in vec3 vtxPos;

in vec3 vtxNorm;
in vec2 vtxUV;

out vec2 texcoord;

void main() {
gl Position = vec4(vtxPos, 1) * MVP;
texcoord = vtxUV;

}

'uniform sampler2D samplerUnit;
in vec2 texcoord;
out vecd fragmentColor;

|void main () {
fragmentColor = texture (samplerUnit, texcoord):;

[}




Atlatszdsag:
Sorrend szamit!

fragment shader
glEnable (GL_BLEND) ; output

glBlendFunc ( (Rs- GslBs-'As) (Rdi Gdr BdsAd)
GL_SRC_ALPHA, *

GL_ONE_MINUS_SCR_ALPHA oL X
) *

glDrawArrays (GL _TRIANGLES,0,nVtx);

glDisable (GL_BLEND) ; (R.G,B.A) [

Rasztertar
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Scene

class Scene {
Camera camera;
vector<Object *> objects;
Light light;
RenderState state;
public:
void Render () {
state.wEye = camera.wEye;
state.V = camera.V;
state.P = camera.P;
state.light = light;
for (Object * obj : objects) obj->Draw(state) ;
}

void Animate (float dt) {
for (Object * obj : objects) obj->Animate (dt) ;
}
};




Object

class Object {
Shader * shader; - i v :
Material * material; Erték szerinti paraméteratadas:
Texture * texture; Objektumok nem zavarjak egymast
Geometry * geometry;
vec3 scale, pos, rotAxis;
float rotAngle;
public:
virtual void Draw(RenderState state) {
state.M = Scale(scale.x, scale.y, scale.z) *

Rotate (rotAngle,rotAxis.x,rotAxis.y,rotAxis.z) *

Translate (pos.x, pos.y, pes.z);
state.Minv = Translate(-pos.x, -pos.y, -pos.z) *

Rotate (-rotAngle,rotAxis.x,rotAxis.y,rotAxis.z) *

Scale(l/scale.x, 1/scale.y, 1/scale.z);
state .material = material; state.texture = texture;
shader->Bind (state) ;
geometry->Draw() ;

}
virtual void Animate(float dt) {}
};




Shader

struct Shader {
unsigned int shaderProg;

void Create(const char * vsSrc, const char * vsAttrNames([],

}

const char * fsSrc, const char * fsOuputName) {
unsigned int vs = glCreateShader (GL VERTEX SHADER) ;
glShaderSource (vs, 1, &vsSrc, NULL); glCompileShader (vs) ;
unsigned int fs = glCreateShader (GL_FRAGMENT SHADER) ;
glShaderSource (fs, 1, &fsSrc, NULL); glCompileShader (fs) ;
shaderProgram = glCreateProgram() ;
glAttachShader (shaderProg, vs);
glAttachShader (shaderProg, £fs);

for (int i = 0; i < sizeof (vsAttrNames)/sizeof (char*); i++)

glBindAttribLocation (shaderProg, i, vsAttrNames[i]);
glBindFragDataLocation (shaderProg, 0, fsOuputName) ;
glLinkProgram(shaderProg) ;

virtual

void Bind(RenderState& state) { glUseProgram(shaderProg); }




ShadowShader

class ShadowShader : public Shader {
const char * vsSrc = R"(
uniform matd4d MVP;
in vec3 vtxPos;
void main() { gl_Position = vecd (vtxPos, 1) * MVP; }
| LI
const char * fsSrc = R"(
out vecd4d fragmentColor;
void main() { fragmentColor = vec4(0, 0, O, 1); }
)
public:
ShadowShader () {
static const char * vsAttrNames[] = { "vtxPos" };
Create(vsSrc, vsAttrNames, £sSrc, "fragmentColor");

}

void Bind (RenderState& state) {
glUseProgram(shaderProg) ;
mat4d MVP = state.M * state.V * state.P;
MVP.SetUniform(shaderProg, "MVP");




Animacio

Szirmay-Kalos Laszlé




Animacio = idofuggeés
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Animation means that the properties of objects, light sources, or the camera
change in time. Any property may change, but the most important case is
when transformations are functions of time. If modeling transformation
depends on time, we animate objects. If camera transformations are time

dependent, we animate the camera.




Valos idejd animacio és
diszkrét id6 szimulacio

tstart tend

dt
void IdleFunc( ) { [/ idle call back

static float tend = 0;

const float dt = 0.01; // dt is ”"infinitesimal”
float tstart = tend;

tend = glutGet(GLUT_ELAPSED_?IME)IIDO0.0f;

for (float t tstart; t € tend; t += dt) {
float Dt = min(dt, tend - t);
for (Object * obj : objects) obj->Control (Dt);
for (Object * obj : objects) obj->Animate (Dt) ;

}
glutPostRedisplay () ;

Animation also means that when some time elapses, the state of the virtual
world catches up with the elapsed time. This should be happening even if the
user does not even touch the computer. The event handling system provides
the idle callback for this purpose. So in an idle call back, the elapsed times is
computed, and the time interval [tstart,tend] elapsed since the last idle
callback is simulated. As there is no upper limit for the length of the
simulated interval, it is decomposed to dt steps that are sufficiently small.
Here small means that time differentials can be well approximated
differences and in dt we can suppose that the velocity and acceleration are
constants.

The simulation of an object is subdivided to control and animate. Control
means the preparation for the state change, and animate means the execution
of the state change.

If we merged the two operations together, then the simulation would depend
on the processing order of objects.




Valdszer(i mozgas

* Fizikai torvények:
— Newton torvény
* Impulzus derivéltja az er6; Perdlilet derivaltja a forgatényomaték
— Utkozés detektalds és valasz:

* impulzus és perdilet megmaradas
* energia részleges megmaradas

* Fizioldgiai torvények
— csontvaz nem szakad szét
— meghatarozott szabadsagfoku iziiletek
— bér rugalmasan koveti a csontokat

* Energiafelhasznalas minimuma -

The task of animation is the definition of the time dependence of
transformations. We hope for realistic animations that do not contradict to the
physical laws (acceleration is proportional to the force, linear momentum and
angular momentum are conserved) or to the physiological laws (bones are
connected by joints that do not allow bones to separate).




Newton torvény
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According to the Newton’s law, acceleration, i.e. the second derivative of the
motion is proportional to the force. As forces act on some elastic mechanism,
they cannot change abruptly. So generally, the path should have a continuous
second derivative, i.e. of C2 type curve.

However, if the body is really rigid (and not elastic), then force can change
abruptly. In case of collisions very large, i.e. infinite forces may occur. So in
special situations, the path can be of C1 or CO type.




T\, (t): Mozgastervezés
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So we need motion curves that are generally of C2 type, occassionally of C1
and CO. Motion is the time dependence of 4x4 homogeneous linear
transformation matrices, having 16 elements. However, typical motions like
translation, translation+rotation etc. Have less degrees of freedom, translation
has 3, rotation has also 3, thus the 16 matrix elements are not independent.
Should we interpolate them independently, the transformed object would be
distorted. Therefore, we never specify time dependency directly for the
transformation matrix elements. Instead, the space of independent motion
parameters is found, the independent motion parameters are given time
functions and are calculated first, then the matrix elements are obtained from
the independent motion parameters. For rigid body motion, the independent
motion parameters include the Cartesian coordinates of the translation, the
direction vector of the rotation axis, and the angle of rotation. If the size can
also change in time, three additional scaling parameters are added. From
these, the modeling transformation matrix can be obtained.




Mozgastervezés a paramétertérben

* p(t) elemei alt. C?, néha (C%,C° folytonosak
* p(t) elemeinek a definicidja:
— gorbével direkt modon (spline)
— képlettel: script animation
— kulcsokbdl interpolaciéval: keyframe animation
— gorbével indirekt médon: path animation

— mechanikai modellbél az er6k alapjan: physical
animation

— mérésekbdl: motion capture animation

Let us concentrate on the definition of the vector of independent motion
parameters. There are various possibilities to define time functions in them.

Parametric curves use the analogy of motion, thus they can be directly used to
describe motion. The time functions can also be given by formulae (e.g
motion of a bullet from a canon). Keyframe animation requires the setting of
objects at discrete points of time, called keyframes, and the inbetweening
process finds curves that interpolate the discrete poses. Path animation
defines the path with a motion curve also requiring that the orientation of the
object changes according to the motion, i.e. the object follows its own ,,head”
and tries to preserve a vertical direction. Physical animation does not specify
motion directly, but provides the physical parameters like mass, friction,
initial velocity and position etc. and solves the laws of motion to simulate
motion. Finally motion capture animation measures the motion of a real-
characted (motion artist) and uses the measured data to control a virtual
character.




Keyframe
animacio

Let us define a clip by keyframe animation, where a ball bounces on the floor
while a door opens and lets the ball in. At 5 points of time, the ball and the
door a positioned.




Keyframe animacio gorbéi

The discrete positions are black dots, i.e. Points to be interpolated on the yet
unknown motion curves (y and z coordinates of the ball are shown). The
interpolation is down with Catmull-Rom spline, so we get two functions

interpolating the key values. The resulting animation is not realistic since it
does not provide the bouncing effect.



Gorbék megvaltoztatasa
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So the splines are modified by hand. We know from physics that the y
coordinate should follow a parabola.




Palya (path) animacid

= spline paraméter vagy az ivhossz

For path animation a single 3D curve should be drawn, which directly defines
the position and indirectly the orientation.




Palya animacio: Transzformacio
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The indirect orientation definition is based on the recognition that objects like
airplanes, birds, cars, people, animals etc. follow their own ,,nose”, meaning
that their nose always point into the direction of the motion, which is the
current velocity vector. The velocity is the derivative of the path. The nose
direction is not enough to define the full orientation, so we also specify a
,preferred vertical” direction. This can be a fixed direction or the current
acceleration (this option is called Frenet frames in differential geometry).

If in modeling space, the nose direction is axis z, the vertical direction is axis
y, then the transformation matrix can be directly obtained from their
transformed versions.




Fizikai animacio

* Erék (pl. gravitacio,
turbulenciastb.)

* Tomeg, tehetetlenségi
nyomaték (F = ma)

+ Utkozés detektalas
(metszéspontszamitas)

» Utkdzés vélasz
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— rugok, ha kézel vannak
— impulzus megmaradas

In physical animation the forces, masses, inertia and the initial conditions are
defined and motion is obtained simulating the physical laws:

- Linear momentum is the product of the mass and the velocity of the center
of mass

The time derivative of the linear momentum is the force

- Angular momentum is the product of the inertial matrix and the angular
velocity

- The time derivative of the angular momentum is the torque
- Collision happens when objects are abount to penetrate into each other

- Upon collision, linear momentum and angular momentum are conserved,
the Kkinetic energy is conserved only in case of elastic collision.

Note that in dog school the formula of the kinetic energy of rotational motion
is wrong. What would be the right one?
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Egy kis mechanika
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For the sake of simplicity, we consider only translational motion and point
like objects. The force field in nature may depend on the time (e.g. wind),
position (e.g. gravity) and the velocity (e.g. air resistance), but not on higher
derivatives. According to the Newton’s law, the time derivative of the
velocity is the force divided by the mass. According to the definition of the
velocity, it is the time derivative of the position. So we have two linear
differential equations that need to be solved. If the time is decomposed to
small steps dt, differentials are approximated by differences, so the change of
velocity will be the acceleration times dt, while the change of position the
velocity time dt, since we assume that dt is small enough so acceleration and
velocity are constants.

This is not the case for collision, so this should be checked and if collision
happens, the modified velocity should be directly computed from the
preservation laws (linear momentum and angular momentum are preserved,
Kinetic energy is preserved only for elastic collision).

For the motion of a point like object in interval dt when we can assume that
the velocity is constant, collision detection is equivalent to ray tracing.
Collision response is similar to mirror like reflection if the collision is elastic,
and we should reduce the perpendicular component if it is inelastic.




Folytonos-Diszkrét
Utkozés detektalas pontra és féltérre
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Continuous collision detection is equivalent to ray tracing since the path of a
point is assumed to be linear in dt.

Discrete collision detection checks whether the objects have penetrated into
each other by containment test.
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In character animation, the skeleton defines the motion. Every bone in the
skeleton can introduce a rotation around the joint and a translation depending
on the length of the bone.




Csontvaz

When bone animation is defined, the bones and joints connecting them are
also included in the mesh representing the skin. By default, a skin vertex will
be transformed by the transformation of that bone which is closest to it.

During animation, the bones are rotated in the joints and upper level bones
naturally modify all other bones connected to it via joints. The skin is
deformed with the resulting transformation matrices of the bones.







Transzformacio hierarchia
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To examine how this can be done in OpenGL, let us consider a skin vertex
attached to the cyan bone. When this correspondence is made, the skin vertex
Is expressed relative to its bone, i.e. in the coordinate system of the bone,
resulting in (x,y,2).

This point can also be expressed in the coordinate system of the parent bone
(brown bone), just the transformation between the reference systems of the
two bones should be executed. This is currently a translation along axis x
with the length of the bone I.

If the child (cyan) bone is rotated, this rotation applies to the skin in its
coordinate system, thus rotation happens before applying the translation to
the parent system.

If the parent bone is rotated, the skin is translated first to the parent’s
coordinate system, then rotation takes place.




Transzformacio hierarchia

Rotate(theta,, 0,0, 1) *
Translate(/;, 0, 0) *
92 Rotate(theta,, 0, 0, 1);

Rotate(theta,, 0, 0, 1) *
Translate(/;, 0, 0) *
Rotate(theta;, 0,0, 1) *

| Translate(x0, y0, z0);
l (x0,v0,20)

If both bones are rotated, first child rotation, then translation to the parent’s
system, finally rotation of the parent are executed. If the parent is also a child
of some other node, or the parent is placed in the world, then new
transformations must be added on the top of the hierarchy.

Generally, a bone is a rotation transformation for its own skin and a rotation +
translation to its children, which should be applied recursively on hierarchical
characters.




P M an Pman |70

Head || Torso || Legl Leg2 || Arm || Arm2

TO = Pman eléremozog
Translate(forward, up, 0)

T1=vall pozicid
Translate(leftShoulderPos)

T2 = kar forgatas
Rotate(armAngle, armRotAxis)

T3 = kéz pozicid
Translate(armLength, 0, 0)

Our simple example is the primitive man, which consists of a head, torso, two
independent legs and two arms. Let us consider just an arm.

Pman swings his arm while walking. The swing rotation is defined in a
coordinate system where the origin is the shoulder position. Then, the
position of the shoulder with respect to Pman should be defined, i.e. the
swinging arm should be expressed in a coordinate system having the origin in
the center of Pman. This is a translation. Finally, Pman moves forward, i.e. its
center is translated in the world coordinate system. So the arm is first rotated
(T2), then translated (T1), and translated again (TQ). From these
transformations, TO and T2 change in time, but T1 remains constant, which
defines the physiological constraints of the body:

Pman can move its complete body and can swing its arm, but cannot remove
its arm from its shoulder.




Pman

Pman rajzolas és animacio //\

class Pman {
float armAngle, dArmAngle, forward, up; A BOdy

const .. armLength, armRotAxis, rightArmJoint, ..;
public:
void DrawArm(float dt, matd4d M)—¢ PUSh/Pop
M = Rotate(armAngle, armRotAxis) * M; // T2
DrawRefArm (M) ;

}

void DrawPman( ) { // set matrices from animation parameters
matd4d M = Translate(forward, up, 0); // TO
DrawRefBody (M) ;
DrawArm(dt, Translate(rightArmJoint) * M); // T1
DrawLeg (dt, Translate (rightLegJdoint) * M)

}
void Animate (float dt) { // calculate animation parameters
armAngle += dArmAngle * dt;
if (armAngle > 0.5 || armAngle < -0.5) dArmAngle *= -1;
forward += 5 * dt;
}
}:

Only the parameters of TO and T2 are updated.

T2 is a periodic swinging rotation, which is defined by two key frames
defining the two extreme angles and the rotation angle is linearly interpolated
in between according to the elapsed time.

Note that when we step on a lower hierarchy level, the transformation matrix
is pushed on stack, and then restored since objects on the same level should
not interfere (arms are independent, so are legs). However, the parent affects
all its children.




Inverz kinematika

# T0 = el6remozgas (forward, up) ???

— T2 = |ab forgatds(ang)

i‘—_;' “

L 3 1 "
‘-i‘ ;

—- TG Maszkodo nem csuszkdlhat

forward += leg * fabs(sin(angNew) - sin(ang0ld)) ;
up = leg * cos(angNew) ;

The motion defined by constant forward moving velocity and constant
angular speed in the hips and shoulders is not realistic since the leg will slip
on the floor (like a break dancer) and the body will fly over the floor.

In realistic walking one leg should stand still on the floor. In an animation,
the point of interest for which constraints are given is called the end effector
(a term inherited from robotics). The end effector of the walking is the leg
holding the weight of the body.

The problem is that we define the character state from top to bottom by
setting a sequence of transformations. This is called forward kinematics.
The end effector at the end of the transformation sequence will be affected by
all transformations. The task is to determine the upper level transformations
in a way that the resulting end effector position meets the specified constraint.
Such problems are called inverse kinematics.

In this simple problem, we can explicitly solve the inverse kinematics
problem since the relationship between the position of the character (forward
and up) a hip rotation (ang) is defined by a right triangle of hypotenuse equal
to the leg length. The end effector is always on the ground, so up directly
specifies the distance from the floor. However, Pman walks forward, so its
location along the forward direction is not constant. The actual forward




position is just relative to the leg, which means that forward is updated
incrementally.



Inverz kinematika

up(0,,0,) =1/, sin0, + /, sin(0, +6,)

forward(0,,0,) =/, cos 0, + /, cos(0, + 0,)

In case of multiple joints and bones, the correspondence between the rotation
angles and the relative position of the origin and the end effector may become
complicated if the rotation axes are different. However, when rotation axes

are parallel (more or less, this is the case for hip and knee rotations), a simple

analytic expression can be elaborated.




BOrozeés




3. hazi: Téruszba zart Spiderman

Egy proceduralisan textirazott, diffiz-spekularis torusz belsejében egy
ugyancsak proceduralisan textirazott golyd gordiil, egy cian €s egy
sarga fényti fényforras labda pattog a torusszal rugalmasan iitkozve és a
mechanikai energiajat megtartva, valamint spiderman avatarunk varja a
sorsat, akinek a szemszogévol kovetjiik az eseményeket és gyonyor-
kodiink a Phong arnyalt szintérben. A torusz rogzitett, golyé anti-
gravitacios késziilékkel van ellatva, igy nem szakad el a torusz falatol.
A tobbiekre pedig hat a homogén nehézségi erotér. A golyo palyaja a
torusz falan periodikus és nem kor (palyaanimacio). Spiderman mindig
a golyo iranyaba néz, mert szeretnénk elkeriilni, hogy a goly6 lega-
zolja. Ha a torusz belsé falanak egy pontjara mutatunk a bal egérgomb
lenyomasaval, akkor oda egy nem zérus nyugalmi hosszusagu gumi-
kotelet 16 ki, ami megnyulas esetén a Hooke torvény és a dinamika
alaptorvénye szerint magaval rantja, igy a kozeled6 golyo eldl el tud
ugrani. Minden Gjabb gumildvés a régit oldja.




Torusz

(R—\/xz+zzf+yz—r2 =0

x(u,v)=(R+rcos(2mu))cos(2av)
v(u,v)=rsin(2mu)
z(u,v) =(R+rcos(2mi))sin(27v)




Megl6tt pont eldallitasa

* Irany visszatranszformaldsa
vilagkoordinatarendszerbe és ray tracing

* Irany és mélység visszatranszformalasa
vildgkoordinata rendszerbe (glReadPixels)

» Képszintézis szinek helyett vilagkoordinatak
rajzolasaval (vigyazat 8 bites rasztertar vagy
render-to-texture)




Golyo gordul a toruszon
Té A
orusz parameterter . i (u (t),v (t)) B B¢ dii X 5_]‘ ﬂ
u(1), () dr Ou ds ov ds

u
r(u,v) l




Jatékfejleszteés

THUE, POR ANY MONDETER i STIC TUm i
NACHINE [ THAT Auns M FOME POLYNGH AL
TIME pin), LE CAN DEVIE AN ALSORITHM

THAT TANES AN INPUT we OF LENGTH i AND
FRODUCES Ep.. THE RUNNING TINE IS Odnid

N A MYLTITAPE PETEAMINISTIC TUING
FACHINE AND .,

Szirmay-Kalos Laszlo




Virtualis valdsag

L7 képszintézis

interakcio

) vezérlés

avatar

Virtualis vilag = objektumok + térvények




Jatékok feladatai

Képszintézis az avatar nézépontjabol

Az avatar vezérlése a beviteli eszkozokkel
(keyboard, mouse, Wii, gépi latas, Kinect, stb.)
Az ,intelligens” objektumok vezérlése (Al)

A fizikai vilag szimulacioja




Jaték OO

Animate(dt), Draw()

Control(dt)

?Mg/ képszintézis

| Al
i\

/

) vezérlés

ProcessInput()
SetCameraTransform( )

/

avatar

Virtualis vilag




Jatékobjektum (GameObject)

class GameObject {
protected:
Shader * shader;
Material * material;
Texture * texture;
Geometry * geometry;
vec3 pos, velocity, acceleration;
public:
GameObject (Shader* s, Material* m,
Texture* t, Geometry* g) { ..
virtual void Control (float dt) { }
virtual void Animate (float dt) { }
virtual void Draw(RenderState state) { }

Virtualis vilag

}

std::vector<GameObject *> objects;




tstart ten
1\ M\ ’

\V) V)
dt
void onIdle ( ) { // idle call back
static float tend = 0;
float tstart = tend; X
tend = glutGet (GLUT_ELAPSED_ TIME)/1000.0f; __p ‘

avatar->ProcessInput( ); e

for(float t = tstart; t < tend; t += dt) {
float Dt = min(dt, tend - t);
for (GameObject * obj : objects) obj->Control (Dt);
for (GameObject * obj : objects) obj->Animate (Dt) ;

i6s hurok gGame loop)
0

.
e

}
glutPostRedisplay() ;

}

void onDisplay () {
glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER _BIT) ;
avatar->SetCameraTransform(state) ;
for (GameObject * obj : objects) obj->Draw(state);
glutSwapBuffers( ) ;




Bolygo: Planet

Geometria: gomb

Textura

Fizikai vagy

— Tajékozodik majd koveti a
gravitacios torvényt

Képletanimacio:

— ,beégetett palya”

— Tobbiek érdektelenek

— Nincs respektalt torvény




Planet class

;lass Planet : public GameObject ({
float rotAngle; // animation state
float rotSpeed; // animation parameter

public:
Planet (Gouraud* s, Diffuse* m, Texture* t, Sphere* s)
: GameObject(s, m, t, s) { rotAngle = 0; rotSpeed = ..;}

void Animate (float dt) { rotAngle += rotSpeed * dt; }

void Draw(RenderState state) {
state.M = Rotate (rotAngle, 0, 0, 1)
state.Minv = Rotate(-rotAngle, 0, 0, 1)
state.material = material;
state.texture = texture;
shader->Bind (state) ;
geometry->Draw() ;

To draw the textured sphere of the planet, we can follow the general strategy
of drawing parametric surfaces since the sphere can also be expressed in
parametric form. The parameter space is tessellated and u,v samples are
inserted into the parametric equations defining point on the surface. Those
points that are neighbors in parameter space form triangles. The u,v pairs are
used directly to pass texture coordinates to OpenGL.

Putting these together, we can implement the Planet class, which is derived
from the general GameObject class, and implements its virtual functions
like Controllt, Interactlt, Animatelt, and Drawlt.

Controllt and Interactlt are empty since a planet does not have to control its
path, neither does it have Al, it simply responds to physics laws.

First, we consider a simplified case when the planet does not move, it only
rotates around its axis. The current state of the planet is represented by
rotation angle rot_angle, which is update in Animatelt according to
rotation speed rot_speed and the elapsed time dt.



The Drawlt function gets the planet to be drawn by OpenGL, first setting the
Earth’s texture (loaded probably in the constructor) as the active texture, asking for
a rotation by rot_angle around vector (0,0,1) (which is supposed to be the Earth’s
axis of rotation), and finally sending the tessellated mesh to OpenGL by
gluSphere. Note that this rotation should not be applied on other objects of the
virtual world, so the transformation is saved in the transformation stack by
glPushMatrix and restored after drawing by glPopMatrix.



A Fold kering a Nap kordul

void Planet: :Animate(float dt) {
rotAngle += rotSpeed * dt;
revAngle += revSpeed * dt;

}

rotAngle
void Planet: :Draw(RenderState state) {

state.M = Rotate (rotAngle,0,0,1)*
Translate(dist, 0, 0) *
Rotate (revAngle,0,0,1) ;

state.Minv = ..;

state.material = material;

state. texture = texture;

shader->Bind (state) ;

geometry->Draw() ;

revAngle

Earth not only rotates around its axis but also revolves around the Sun. So,
we need two animation parameters, rotation angle and revolution angle,
which are updated according to the rotation speed (1/day in real world) and
the revolution speed (1/year in real world), respectively.

Let us read the Drawlt function backwards since transformation should be
read in this order. SpherelnOrigin passes a triangular mesh approximation of
a sphere centered in the origin to OpenGL. glRotatef (rot angle,

0, 0, 1) rotates the sphere around axis =z.

glTranslatef (dist, 0, 0) translates the sphere to
distance dist from the origin where the Sun is
supposed to be. Finally, we apply another rotation
glRotatef (rev_angle, 0, 0, 1), around axis z,
which keeps the Earth on the circle of radius dist
and in the xy plane around the Sun.

By the way, the real Earth’s rotation axis 1s not
perpendicular to the plane of revolution, but is
tilted by about 23 degrees. The addition of this
transformation is a homework.



Az (irhajo

Komplex geometria
— négyszoghalo

Komplex textura

Fizikai animacio

— er6k (gravitacio, rakétdk)
— Utkozések

Viselkedés (Al)

— A rakétak vezérlése
» Utkozés elkeriilés, avatartdl menekiilés, avatar tildozése




Urhajé geometria




Urhajé geometria




Urhajé geometria




Urhajé geometria




Urhajé geometria




Urhajé geometria




Urhajé geometria




Texturahoz paraméterezés




Texturahoz paraméterezés




Texturazott (rhajo




OBJ formatumban

v -0.708698 -0.679666 2.277417
v 0.708698 -0.679666 2.277417
v -0.735419 0.754681 2.256846

vt 0.510655 0.078673
vt 0.509594 0.070000
vt 0.496429 0.079059

vn -0.843091 0.000000 0.537771
vn -0.670151 -0.543088 0.505918
vn -0.000000 -0.783747 0.621081

£ 65/1/1 37/2/2 62/3/3 61/4/4
£ 70/8/5 45/217/6 67/218/7 66/241/8
£ 75/9/9 57/10/10 72/11/11 71/12/12




Animate: Newton mozgastorvényei

void Ship :: Animate( float dt ) {
acceleration = force/m;
velocity += acceleration * dt;
pos += velocity * dt;

}

void Ship :: Draw(RenderState state) {
state.M = Translate(pos.x, pos.y,pos.z);
shader->Bind(state) ;
geometry->Draw() ;




Orientacio beallitasa

modelHead

worldHead = velocity.normalize() ;

void Ship :: Draw(RenderState state) {
vec3 modelHead( 0, 0, 1 );
vec3 worldHead = velocity.normalize() ;
vec3 rotAxis = cross (modelHead, worldHead) ;

float rotAng = acos (dot(worldHead, modelHead)) ;

state.M = Rotate (rotAng,rotAxis.x,rotAxis.y,rotAxis.z)*
Translate (pos.x, pos.y, pPos.z);

shader->Bind (state) ;

geometry->Draw() ;




Ship :: Control

void Ship :: Control( float dt ) {
force = vec3(0, 0, 0);

for (GameObject * obj : objects) {

if (dynamic_cast<Planet*>(obj))

}
if (dynamic cast<Avatar*>(obj)) {

bullet
I avatar k I ‘ o .<J
avatar aiming angle
}

}




Utkozésdetektalds: lassi objektumok

Probléma, ha az objektum gyors
“® X X=,
adott ¢ @

dist = objl.pos - obj2.pos
min = objl.BoundingRadius() + obj2.BoundingRadius ()
if (dist.Length() < min) Collision!

t+At




Foton torpedo

e Nagyon komplex
geometria

e Hasonlo kinézet
minden irdanybdl

e Konnyebb a képét

hasznalni
iiﬂait.‘m']\-

o Utkdzésdetektalds = gyors mozgas




Billboard

Egyetlen félig atlatszo textura egy téglalapon

- ! S

-

>

Vos
A




void Bullet :: Draw(RenderState state) {
Vector w = eye - pos;
Vector r = w % Vector(0, 1, 0);
Vector u = r % w;
r = r.normalize() * size;
u = u.normalize() * size;

eye

glEnable (GL_BLEND) ; // atlatszésag
glBlendFunc (GL_SRC_ALPHA, GL_ONE); // hozzaadas

state.M = mat4d (r.x, X.Yi b % A7 0,
u.x, u.y, u.z, 0,
0, 0, L; 0,
pPos.x, pos.y, pos.z, 1);

shader->Bind (state) ;
geometry->Draw() ;

glDisable (GL_BLEND) ;




Robbanas

e Nagyon komplex
geometria

e Hasonlo kinézet
minden iranybdl

e Plakatgyljtemény

® Részecske rendszer




Részecske rendszerek

Globalis erotér

‘ (szé1 fiijja a fiistot)

pos: pos += velocity * dt

velocity: velocity += acceleration * dt
Véletlen acceleration: acceleration = force / weight
Kezdeti
értékek # lifetime

age: age += dt; if (age > lifetime) Kill();

size, dsize: size += dsize * dt;

weight, dweight: weight += dweight * dt

color, dcolor: color +=dcolor * dt




Robbanas paraméterei -

var
Rand(mean, var) mean
o
pos = center; // kezdetben fokuszalt
lifetime = Rand (2, 1);
size = 0.001; // kezdetben kicsi

dsize = Rand(0.5, 0.25) / lifetime;

velocity = Vector (Rand(0,0.4) ,Rand(0,0.4) ,Rand(0,0.4));
acceleration = Vector(Rand(0,1) ,Rand(0,1) ,Rand(0,1));

// Planck torvény: sarga datlatszatlanbol voros atlatszoba
color = Color(l, Rand(0.5, 0.25), 0, 1 );
dcolor = Color(0, -0.25, 0, -1) / lifetime;




Avatar

» A viselkedését a klaviatura vezérli:
— Processinput

* A helye és irdnya viszi a kamerat
— SetCameraTransform

* Olyan mint egy (irhajd, de nem rajzoljuk
— Control: gravitacio, lovedék Gtkozés




KeyboardFune
KeyboardUpFunc
SpecialKeysFunc

Klaviatura kezelés

keys

IdleFunc:
GameLoop

bool keys[256]; // is pressed?

void onKeyboard(unsigned char key,
int pX, int pY¥) {
keys [key] = true;
}
void onKeyboardUp (unsigned char key,
int pX, int pY) {
keys[key] = false;

virtual
world




up
Avatar :: Processinput risht

head

Avatar :: ProcessInput() {
if ( keys[' ‘'] ) // fire!
objects.push_back (new Bullet(pos, velocity));

I/l Kormanyzas: az avatdar koordindatarendszerében!
vec3 head = velocity.normalize( );
vec3 right = cross(wVup, head) .normalize();
vec3 up = cross(head, right);

if (keys[KEY_UP]) force -= up;
if (keys[KEY DOWN]) force += up;
if (keys[KEY_LEFT]) force -= right;
if (keys[KEY RIGHT]) force += right;




Avatar::SetCameraTransform

Avatar :: SetCameraTransform(RenderState& state) {
Camera camera(pos, pos + velocity, wVup,
fov, asp, fp, bp):;
state.V() camera.V() ;
state.P() = camera.P();

E)re ?

wVup = [0, 1, 0] vagy a
gyorsuliashol és a kordabbi wVup atlagabél

lookat




Egy foldi l6voldozdés jaték




Terepek

Komplex geometria =
— magassagmezd :
Bonyolult textura “
Nem gondolkodik

Nem mozog

Utkozés detektalds kell

Megemeli az objektumokat




Terep geometria

z = height(x.y) Magassagmez0:
Diszkrét mintak +
Linearis interpolacio




Diszkrét mintak

Magassag mezo Haromszdg halo




Ellenség

Animalt geometria
— Kulcskeretekkel (clip-enként)

* All, fut, tdmad, meghal
— poligonhalé deformacio
Texturak (animalt)
Al
Utkozés detektalds




Kulcskeret animacio: futas

X}
L




Mesh morphing:
Ido: ¢

Két kozrefogo
kulcskeret

Minden csucsra
linearis
interpolacio

\/

Aktualis csucspontok




Futas poligonhalé deformacioval

+ pozicid animacio:

position += velocity * dt

X
i}




Mozgas definicio

* Clip-ek definicidja kulcskeretekkel
* Osszes clip 6sszes kulcskeretek fajlban: MD2,
MD3
* Tipikus clip-ek:
— Run, stand, attack, die, pain, salute, crouch, wave,
point, taunt, etc.




Clip-ek

B [ES =8
All Fut Szalutal

40 kulcskeret 5 kulcskeret 11 kulcskeret




Mozgasvezérlés

Al state
1do: ¢
Clip = Keyframe | Keyframe-ek
start, stop animation MD?2 fajlban
keyframe

A hiaromszog halo csacspontjai




!

Ellenség Al

Dist <4 &&
Avatar_angle< 40

Dont Care Escape
Dist > 6
Avatar_angle< 20
Dist <4 &&
Avatar_angle> 60
Dist <1
Chase Attack
Dist > 1
Collision 3
with the bullet Dying Avatar_angle

Avatar




GPU
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| GPU

Vertex csucspont

Shader ¢

seometry

Shader _ i _
primitiv

Vigis + Viewport transzf. + *
Raszterizicié + interpolicio I ‘

Fragment
Shader fragmens

By the end of the last century, GPUs were direct hardware implementations of the
incremental image synthesis algorithm, or the OpenGL pipeline. Vertices arriving
from the CPU are processed by transforming them to normalized device space
(matrix-vector multiplication), and — if lighting is enabled — vertices and normals
are also transformed to camera space where the diffuse+Phong-Blinn illumination
formula is evaluated replacing the vertex color with the computed result. In
normalized device space triangles are clipped and having transformed the vertices
to screen space, they are rasterized while vertex properties (color and texture
coordinates) are interpolated for every internal pixel. If texturing is enabled, the
texture memory is addressed by interpolated texture coordinates and the
interpolated color is replaced (or modulated) by the color fetched from the
texture. The pixel color goes through the compositing phase, where alpha
blending and depth testing take place, and is finally written into the frame buffer.
OpenGL makes a clear distinction between pixels that are in the frame buffer, and
call them pixels, and candidate pixels (pixel-wanna-be), called fragments, that
enter the composition phase and hopes that it will pass the depth test and will be
written into the buffer.

Note that this already was a parallel hardware. On the one hand, it is a pipeline
since while the pixels of a triangle are rasterized and textured, the vertices of the
subsequent triangles are transformed and illuminated. On the other hand, this is
also parallel, since vertices and pixels are processed independently, so multiple



transformation+lighting units and texturing units can run in parallel.

At the turn of the new century, two stages of this pipeline became programmable, the
vertex transformation+lighting unit, which is called later as vertex shader, and the
texturing unit, which got the name fragment shader (or pixel shader). A few years later a
new processing element, called the geometry shader was introduced, which processes
primitives (e.g. points, triangles or line segments) and may change the topology of these
primitives. For example, when a point is processed, a triangle fan may be output, or a
triangle may result in a polyline). The geometry shader has no OpenGL interpretation, it is
a more advanced issue. More recently, new shader stages responsible for tessellation have
been included between the vertex and the geometry shaders.

Shaders may read the texture memory and the rendering results may also be directed to
the texture memory instead of the frame buffer (this feature is called render-to-texture).
However, a texture may only be read only or write only at a time. In a pass, the texture of
the render target is written, but cannot be read back (this way we can get rid of
synchronization problems and no write cache is necessary).

The geometry shader may also write out data that is fed back in a later pass to the vertex
shader.

Note that with the introduction of the programability of these stages, their interface and
other stages remained fixed. So, for example, we cannot modify the rasterization or
clipping algorithm, and cannot say that a fragment shader will not produce fragment
colors (and optionally depth). Note also that the processing of vertices, primitives and
fragments is still independent, we cannot establish dependencies in a pass.



Vertex shader es kornyezete

glBegin(GL_TRIANGLES)
glVertex  glNormal | glColor glTextCoord
glEnd()

Allapot
Transzformaciok
Fényforrasok
Anyagok

Geometry shader

Viagas: -w<X<w, -w<¥V<w, -w<Z<w

Homogén osztas: X=X/w, Y=Y/w, Z=Z|w
+ viewport transzformacio

Let us explore the GPU starting at the beginning where the CPU feds it during a
pass and where the vertex shader processes the vertices. When, in a pass,
glNormal, glTexcoord, or glColor functions are executed, the parameters of these
functions will be written into the input registers of the vertex shader. The vertex
shader is triggered with the modification of the input POSITION register
occuring during a gl\Vertex call. The triggered vertex shader executes its program
for the vertex assuming that its properties are in other registers (NORMAL,
COLORO, TEXCOORDQO, etc.). The vertex shader should write out the modified
vertex properties into its output registers (POSITION, COLORO, TEXCOORDO).
If we one to simulate standard OpenGL operation, then the input position is
multiplied by the concatenated MODELVIEW and PROJECTION
transformations (matrix MVP), and if illumination is disabled, then the input
COLORO and TEXCOORDO registers are copied to the output COLORO and
TEXCOORDO registers, respectively. If illumination is enabled, the input
POSITION is multiplied with the MODELVIEW (MV), the input NORMAL is
multiplied with its inverse-transpose (MVIT), and the illumination formula is
evaluated in camera space, writing out this result to the output COLORO instead
of copying the input COLORO. During this computation, the vertex shader needs
”global variables”, called uniform variables that are constant during the pass, like
transformation matrices, light source and material definitions.

When the vertices (together with vertex properties) are available for a primitive



(when a triangle is processed, we wait for 3 vertices), the geometry shader processes the
triangle. We shall assume its default operation, which is just the copy of its input to its
output.



“Standard” vertex shader
(Cg, Shader Model 3.0)

void main (
in float4 position : POSITION,
in float3 normal : NORMAL,
in float4d color : COLORO,
in float2 texcoord : TEXCOORDO,
uniform float4x4 modelviewproj : state.matrix.mvp,
out float4 hposition : POSITION,
out floatd4 ocolor : COLORO,
out float2 otexcoord : TEXCOORDO )

hposition = mul (modelviewproj, position) ;
otexcoord = texcoord;
ocolor = color;

} glDisable(GL LIGHTING );
Mezok elérése:
V.X, V.Y, V.Z, V.W, V.XY, V.WXX
c.¥,; ci;rgb, c.ar; ..

Our first vertex shader program simulates the behavior of OpenGL when lighting
is disabled. A vertex shader is the program run for a single vertex and it computes
the content of the output registers (POSITION, COLORO, TEXCOORDO, etc.)
from the input registers, called varying input and from the state called uniform
input. All registers are of float4 type, so they can hold four float variables.

Registers have fixed names, but we can refer to them as arbitrary variable names.
Registers may be declared not only float4, but also float, float2, float3, which
means that only a part of the register is utilized. We can refer to the fields of a
float4 variable similarly to struct field reference.

When OpenGL lighting is disabled, the input point should be transformed to
normalized device space, which is a matrix vector multiplication with the
modelviewproj matrix (this is passed as a uniform parameter and is the
combination of OpenGL’s MODELVIEW and PROJECTION). In Cg, the
multiplication of an at most 4x4 matrix and a 4 element vector is a single
instruction (mul). The texture coordinates and the vertex color are copied.



glEnable(GL_LIGHTING );

in float4 position : POSITION,
in floatd4d normal : NORMAL,
uniform floatd4x4 modelview, modelviewIT, modelviewproj,®
uniform floatd4 lightpos, Idiff, Iamb, Ispec, @®
uniform float4 em, ka, kd, ks, ®
uniform float shininess,
“out floatd hposition: POSITION,
out float4 ocolor : COLORO
{
hposition = mul (modelviewproj, position); _
float3 N = mul (modelviewIT, normal) .xyz; By
N = normalize(N) ; // glEnable (GL NORMALIZE)
float4d p = mul (modelview, position);
float3 L = normalize( lightpos.xyz/lightpos.w - p.xyz/p.w);
float costheta = dot(N, L); if (costheta < 0) costheta = 0;
float3 V = normalize(-p.xyz);
float3 H = normalize (L + V) ;
float cosdelta = dot (N, H); if (cosdelta < 0) cosdelta = 0;
ocolor = em + Iamb * ka + Idiff * kd * costheta +
Ispec * ks * pow(cosdelta, shininess);

To simulate what OpenGL would do when the illumination is enabled, the vertex
shader should also transform the point and the shading normal to camera space
and compute the reflected radiance there. We need a lot of uniform parameters
describing transformation matrices, light sources, and material properties. The
smiley indicates that the syntax in these lines is incorrect, we should have
repeated the type (e.g. uniform float4x4) for every variable (but there is not
enough space on this slide).

For the sake of simplicity, we assume that only one light source exists.

The program first transforms the point to normalized device space as in the
previous case (this line is a part of almost all vertex shader programs). Then the
normal vector is transformed the camera space, and then is normalized with
normalize Cg instruction, i.e. scaled to have unit length (recall that this line
corresponds to the enabling of the GL_NORMALIZE switch).

The point is also transformed to camera space and expressed in Cartesian
coordinates (cpos). lllumination direction L is computed from the position of the
light source and the point (both of them are in camera space). Geometry factor
costheta is computed as a dot product for diffuse reflection with the dot Cg
function.



As in camera space, the eye is in the origin, so the viewing direction of point cpos is —
Ccpos.

Similarly, halfway vector H is computed, and the Phong-Blinn specular term is evaluated
with a C-like power (pow) function. Emission, ambient reflection, diffuse reflection and
specular reflection are added to get the output color. Note that + and * are evaluated as
needed for spectra in Cg (and we also have dot and cross for vectors).



Pixel shader es kornyezete

Fragment shader
Texturazas

POSITION, COLOR

Kompozitalas: blending, z-bufferelés

Textira azonosité és
paraméterek

Textiira memoria

Rasztertar (szin, mélység, ...)

Rasterization produces fragments that are inside the projection of the 2D triangle
and interpolates all properties. For every fragment, the fragment shader is called
to compute the final color from fragment properties. Note that the rasterization
decides which fragments should be changed, and the fragment shader computes
just the color (optionally the depth) of the given fragment, while it is NOT
allowed to modify the target pixel (this is why we drew the arrow of the
POSITION outside of the fragment shader). The classical function of the
fragment shader is the texture lookup and optional modulation with the
interpolated color.

The computed fragment goes into the compositing phase, which applies alpha
blending or depth buffering if enabled.



“Standard” pixel shader

void main( in float4 color : COLORO,
out floatd4d ocolor : COLOR )
{

ocolor = color;

} glDisable(GL TEXTURE 2D);

void main( in float2 texcoord : TEXCOORDO,
in float3 color : COLORO,
uniform sampler2D texture map,
out floatd4 ocolor : COLOR )

ocolor = tex2D (texture_map, texcoord) *color;

glEnable(GL TEXTURE 2D);
glTexEnvi(GL_TEXTURE_ENYV,
GL_TEXTURE_ENV_MODE, GL._ MODULATE);

Again, we first implement the same functions that would be enforced by the
classic OpenGL operation. If texturing is disabled, the output fragment color is
color interpolated from the vertex colors, which is in the input COLORO register.

If texturing is enabled, the texture map is looked up with the interpolated texture
coordinates passed in TEXCOORDO, and the fragment color is the fetched value.
The texture id is a uniform parameter of the fragment shader, of type sampler2D.
This name indicates that a texture object is more than just an array of texels, it
also stores whether filtering or mipmapping is enabled and how texture
coordinates outside the [0,1] range should be handled.

The texture fetch is done with tex2D Cg function, which returns the color that is
already filtered if filtering is enabled.

In case of modulate texture environment, the interpolated color and the texel are
multiplied.



Gouraud helyett Phong arnyalas
Per-vertex helyett per-pixel arnyalas

Gouraud Gouraud Phong

»
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Our first Cg program is going to be the implementation of Phong shading (per-
fragment lighting), which is not available in OpenGL implementing Gouraud
shading (per-vertex lighting).



Gouraud (per-vertex) arnyalas

Iluminacio

CpU | Vertex | Raszterizacio Pixel
program shader interpolicio shader

pozicio Transz. poz Interpolalt
normalvektor szin szin

Transzformaciok
Anyag
Fényforrasok

When the GPU is programmed, we develop three programs in parallel: a CPU
program that looks similar to a standard OpenGL application and is written, e.g.
in C++, a Vertex shader and a Fragment shader program written in Cg.

The rendering pass of the CPU program initiates gINormal and gl\Vertex calls that
will send vertices with their normals to the vertex shader. In standard OpenGL,
Gouraud shading would calculate the point transformed to normalized device
space and the color based on the illumination formula in the vertex shader
program. The fragment shader would just pass the interpolated vertex color to the
compositing phase.



Phong (per-pixel) arnyalas
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[Nluminacio

CeU | | Vertex | Raszterizacié Jaa. | Pixel
program | shader interpolacié shader |

pozicio
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normalvektor P P

N=Transzf.normal N,V,L
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Transzformaciok | L=Fény irany

Fényforras poz

Anyag

Fény intenzitas

To execute Phong shading, the illumination evaluation should be transported to
the fragment shader. On the CPU level, the program still passes normals and
vertices. The vertex shader still transforms the point to normalized device space,
but instead of evaluating the illumination formula, it just computes the vectors
(normal, view and lighting) needed by the evaluation. These vectors are
interpolated during rasterization, and the fragment shader evaluates the
illumination formula using the interpolated vectors.

Transformations (ModelViewProjection, ModelView, ModelViewlIT) are still
needed in the vertex shader, as well as the light source position. However,
material properties and light intensity are used in the fragment shader, so these
will be uniform parameters there.



Programok (labbal hajtés megoldas)

e .cpp CPU program:
Shader environment létrehozas

s — GPU képesség beallitas (profile)

— Vertex/fragment program betoltés és forditds: CREATE
— Vertex/fragment program atadas a GPU-nak: LOAD

Inicializal

Vertex/fragment program kivalasztas: BIND
Uniform vertex/fragment input valtozé 1étrehozas
Uniform vertex/fragment valtozo értékadas

Display

Valtozo input valtozo értékadas (glVertex, glColor, glTexCoord)

® .cg vertex program
— Fragment program valtozo input + homogén pozicid

e .cg fragment program
— Szin kimenet

We shall put together the programs according to the requirements of the Cg
toolkit, which was the first and is the most complicated solution (a more
comfortable alternative would be the GLSL framework). We insist on using the
Cg toolkit, because it does not hide details, so it reveals what is going on. This
approach clearly separates the three components, the CPU program, the vertex
program, and the fragment program, and expects them in separate files.

The CPU program is responsible for compiling and loading the GPU programs
supplied in two additional files (named usually with .cg extension).

The CPU program starts with the definition of the Shader environment, which
allocates a structure in the CPU memory where GPU related information is stored
(similar to opening a file). GPUs are advancing, currently we have Shader Model
1..5 class GPUs, so the compilation should also depend on what the GPU in the
computer is capable of, which is specified during profile setting. Creating a
vertex (or fragment) program usually means the loading the source code from a
file into the Shader environment structure of the CPU memory and its
compilation based on the profile setting. Loading the compiled GPU program
means the transfer of the executable code to the GPU memory. A GPU may store
different vertex (or fragment) programs at a time, so we should specify which is
the active one, which is called binding (the meaning and the name are similar to
those of texture mapping).



The CPU can send informaiton to the shader via uniform variables, which have a
representative on the CPU and on the GPU as well, so during their creation, the
correspondence should also be established.

Before starting rendering, the global variables of the shaders, i.e. the uniform variables
should be set. Rendering is the executing a pass, including giNormal, glColor,
glTexCoord, and glVertex calls, which write their parameters into registers.
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CPU program - Inicializalas
#include <Cg/cgGL.h> /I Cg fiiggvények
CGparameter LightPos, LightInt, Shine, Ks, Kd; // uniformpar a CPU-n

int main( ) {
CGcontext shaderContext = cgCreateContext () ; // arnyalo kontextus

CGprofile vertexProf = cgGLGetLatestProfile (CG_GL_VERTEX) ;
cgGLEnableProfile (vertexProf) ;

CGprogram vertexProgram = cgCreateProgramFromFile (
shaderContext,
CG_SOURCE, “vertex.cg",
vertexProf, NULL, NULL);

cgGLLoadProgram (vertexProgram) ; /[ GPU-ra toltés
cgGLBindProgram (vertexProgram) ; /I ez legyen a futo program

// vertex program uniform paraméterek. CPU-n Lightpos; GPU-n clightpos
LightPos = cgGetNamedParameter (vertexProgram, “clightpos") ;

»
]
=
H=1
'
&
=
[
&
~
[
=
w
”
&
'
[
&
g

To access Cg functions, the Cg toolkit should be downloaded and installed. The
declarations are in the cgGL.h file (stands for Cg for OpenGL).

First the shaderContext structure is allocated, then the profile for the vertex
program is set. Note that with cgGLGetLatestProfile, we find the most

powerful profile the GPU inside the computer can offer.

The vertex program is created with cgCreateProgramFromFile, including
loading it from a file, stating that the name of the file is vertex.cg and it is a Cg
source file, and compiling it in the shaderContext according to the vertex profile.
With the additional parameters of this function, we can set the entry point of the
vertex shader program, the default is the main function like in C.

The compiled program is transferred to the GPU with cgGLLoadProgram,
and is made active with cgGLBindProgram.

To implement Phong shading, the vectors needed for the
illumination calculation are obtained in the vertex

shader, for which we need the light source position in
camera space. This information is passed from the CPU



as a uniform variable. To do that, we should define a
CGparameter in the CPU program (we call it Lightpos), and
connect it with a uniform parameter of the vertex program
(which is called clightpos) using the cgGetNamedParameter
function.



Fragmens arnyalo betoltés

CGprofile fragmentProf = cgGLGetLatestProfile (CG_GL_ FRAGMENT) ;
cgGLEnableProfile (fragmentProf) ;

CGprogram fragmentProgram = cgCreateProgramFromFile (
shaderContext,
CG_SOURCE, “fragment.cg",
fragmentProf,
NULL, NULL) ;

cgGLLoadProgram (fragmentProgram) ; // GPU-ra toltés
cgGLBindProgram (fragmentProgram) ; // ez a program fusson

// fragmens program uniform paraméterek
Shine = cgGetNamedParameter (fragmentProgram, "shininess");
Kd = cgGetNamedParameter (fragmentProgram, "kd");
Ks = cgGetNamedParameter (fragmentProgram, "ks'");
LightInt = cgGetNamedParameter (fragmentProgram, “lightint") ;

... OpenGL inicializalas

The fragment shader is set in a similar way, first the profile is enabled, then the
program is loaded from file and compiled, then uploaded to the GPU, and finally
set to run with binding operation.

The fragment shader is controlled via three uniform parameters that have
Lightint, Shine, Kd, and Ks names on the CPU and lightint, shininess, kd, and ks
on the GPU.



CPU program - OpenGL display
void Display( ) {

glLoadIdentity () ; #dllapot (implicit uniform) paraméterek beallitisa

gluLookAt (0, 0, -10, 0, O, O, O, 1, 0);

glRotatef (angle, 0, 1, 0);

// explicit uniform paraméterek beallitasa
cgGLSetParameter4f (LightPos, 10,20,30,1); // clightpos
cgGLSetParameter3f (LightInt, 1, 1, 1) // lightint
cgGLSetParameterlf (Shine, 40); // shininess
cgGLSetParameter3f (Kd, 1, 0.8, 0.2); //
cgGLSetParameter3f(Ks, 2, 2, 2); 1/

// valtozo paraméterek, a PASS
glBegin( GL_TRIANGLES ) ;
foxr( .. ) 4
glNormal3f (nx, ny, nz); 7/ NORMAL r regiszter
glvertex3f(x, y, z):; // POSITION regiszter + trigger

}
glEnd() ;

OpenGL rendering usually takes place in the Display callback. Here we set the
transformation matrices, which are immediately uploaded to the GPU by
OpenGL, where our own shader programs may also access them as uniform
parameters. User defined uniform parameters are set by
cgGLSetParameter[1l..4]f, depending on how many float
fields this parameter has.

Finally, a conventional OpenGL pass 1is executed, which
sets input register NORMAL when glNormal is called and
POSITION when glVertex is called. Function glVertex
also gets the vertex shader to execute its program
once.



Phong arnyalas: vertex shader

void main (
in float4 position : POSITION,
in float4 normal : NORMAL,
uniform float4x4 MVP : state.matrix.mvp,
uniform floatd4x4d MV : state.matrix.modelview,
uniform floatdx4d MVIT : state.matrix.modelview.invtrans,
uniform float4 clightpos, // fényforras poz. kamerak-ban
out float4 hposition : POSITION,
out float3 cnormal : TEXCOORDO,
out float3 cview : TEXCOORD1,
out float3 clight : TEXCOORD2

hposition = mul (MVP, position) ;

floatd4d cp = mul (MV, position);

cnormal = mul (MVIT, normal) .xyz;

clight = clightpos.xyz * cp.w — cp.xXyz * clightpos.w;
cview = -cp.xyz;

The supplied vertex position is transformed to normalized clipping phase as
almost always, and additionally, in Phong shading, the vertex shader computes
the vectors needed for the illumination. We obtain these vectors in camera space.

So first, the input position is also transformed to camera space using the
MODELVIEW matrix. This is set by OpenGL, and we can connect our MVP
uniform variable to the OpenGL state variable where this information is stored.
Although very unlikely, this matrix multiplication may modify the fourth
homogeneous coordinates, so after matrix-vector multiplication, the vertex
position is expressed with Cartesian coordinates applying homogeneous division.

The normal vector is also transformed to camera space using the inverse-
transpose of the MODELVIEW matrix (fortunately, this matrix is also in the
OpenGL state) resulting in cnormal. The light source position in camera space is
passed from the CPU as a uniform parameter. The difference of the light source
position and the vertex position is the camera space illumination direction clight.
The difference of the origin and the vertex position is the camera space viewing
direction cview.

Vectors evaluated at the vertices should be interpolated for fragments inside the
triangle’s projection. So these vectors should be passed to the rasterizer as vertex



properties. Unfortunately, there is no register like “LIGHTDIR” or “VIEWDIR” (and not
even “NORMAL” during rasterization), but there are many, general purpose texture
coordinate registers, so we utilize them to carry and interpolate these vectors.



Phong arnyalas: fragment shader

void main ( in float3 N : TEXCOORDO,
in float3 Vv : TEXCOORD1,
in float3 L : TEXCOORDZ2,
uniform float3 lightint,
uniform float shininess,
uniform float3 kd,
uniform float3 ks,
out float3 ocolor : COLOR )

normalize( N );
normalize( V );
normalize( L );

float3 H = normalize(V + L) ;
float costheta = max(dot(N, L), 0);
float cosdelta = max(dot(N, H), 0);
ocolor = lightint *
(kd * costheta + ks * pow(cosdelta, shininess));

The triangle is clipped and rasterized, when fragments inside the projection are
visited. For each fragment, the fragment shader is executed that gets the
interpolated values of the registers (recall that in TEXCOORDO we passed the
cnormal from the vertex shader, so no TEXCOORDO stores the interpolated
normal).

Vectors are normalized since linear interpolation make them have not unit length
even if they were normalized before the interpolation. Halfway vector H is
computed, then a standard diffuse + Phong-Blinn illumination formula is
evaluated.

The result is written into the COLOR register, which will be sent to the frame
buffer via compositing.



NPR

void main( in float3 N : TEXCOORDO,
in float3 Vv : TEXCOORD1,
in float3 L : TEXCOORD2,
uniform float3 kd,
out float3 ocolor : COLOR )

normalize( N );
normalize( V );
normalize( L );

float costheta = dot(N, L) ;

float y = (costheta > 0.5) ? 1 : R Y

if (abs(dot(N, V)) < 0.2) ocolor float3(0, 0, 0);
else ocolor y * kd;

Note that we are not obliged to use the old diffuse + Phong-Blinn model, but
arbitrary BRDF models can be implemented. We could even take a non-physical
model, for example, use cartoon shading mimicking artistic rendering (aka Non-
Photorealistic Rendering). This simple shader assumes that we have just two
shades of color (or paint), so illuminated points are painted with light green,
points in shadow with dark green. A black silhouette is also drawn to mimick
hand-drawn images by checking where front facing and back facing surfaces
meet and therefore the angle between the normal and the viewing direction is
close to 90 degrees.



Lichthof Productions



1. pass:

Arnyek
4 4 LoadIdentity();
terkepek uLool:f:t(lighlx. lighty, lightz,

lookatx, lookaty, lookatz,

lupx, lupy. lupz);
Modellezési transzformacio
Képszintézis

Z-buffer -> textura masolas (v. kozv)

2. pass:

giMatrixMode(GL MODELVIEW);,

glLoadlIdentity():

gluLookAt(eyex, eyey, eyez,
lookatx, lookaty, lookatz,
upx, upy, upz);

Modellezési transzformacio

Képszintézis + arnyék teszt

The second example of shader programming is the implementation of the shadow
mapping algorithm. Recall that in OpenGL there is no rendered shadow since all
surfaces are processed independently. Independent processing is still the feature
of the programmable GPU, so shadows are still impossible in a single pass.
However, they can be generated in multipass rendering.

The idea of shadow mapping is that those points are in shadow that are not visible
from the light source. So if we render the scene from the point of view of the
source, and determine which points are visible from there, this information can be
used in the second rendering pass, when the point of view is moved back to the
camera.



Képszintézis + arnyekteszt

DepthMap id, kd, lightint

Pixel
CPU Vertex Raszterizacio shader
program shader Interpolacié
Pozicio
Normal Transzf. Poz
Fény normalizalt képernyé
MVP, LMVP Kamera térbeli L, N
MV, MVIT

transzformaciok DepthMap

texelek




void main (

hPosition =

lPosition
floatd cp
cnormal =
clight =

Vertex shader

in floatd4 position : POSITION,

in float4 normal : NORMAL,

uniform floatd4x4 MVP, LMVP, MV, MVIT, ®
uniform float4 clightpos,

out float4 hPosition : POSITION,

out float4 lPosition : TEXCOORDO,

out float3 cnormal : TEXCOORD1,

out float3 clight : TEXCOORD2

mul (MVP, position); // to eye's clip space

= mul (LMVP, position);// to light's clip space

= mul (MV, position); // camera space (Phong shade)
mul (MVIT, normal) .xyz;

clightpos.xyz * cp.w — cp.xyz * clightpos.w;

? 4
=

position




Fragment shader

void main (
in float4 lPosition : TEXCOORDO,
in float3 N : TEXCOORD1,
in float3 L : TEXCOORDZ,
uniform float4 lightint, kd, ®
uniform sampler2D depthMap,
uniform float bias,
out float4 ocolor : COLOR )

0,0

Clipping

space to

float2 texcoord;
texcoord.x = (lPosCartesian.x + 1)/2; 5
texcoord.y = (lPosCartesian.y + 1)/2; Texture
float this_depth = (lPosCartesian.z + 1)/2 - bias; | Spacc
float stored depth = tex2D (depthMap, texcoord) ;
if (this_depth <= stored depth) { // == kéne

N = normalize(N); L = normalize (L) ;

ocolor = lightint * kd * max(dot(N,L), 0);
} else

ocolor = float3(0, 0, 0);

float3 lPosCartesian = lPosition.xyz/lPosition.w; ’




Projektiv texturazas matrixa

float3 lPosCartesian = lPosition.xyz/lPosition.w;

texcoord.x = (lPosCartesian.x + 1)/2;
texcoord.y = (lPosCartesian.y + 1)/2;
float this_depth = (lPosCartesian.z + 1)/2

M \

Light’s Light’s

Model :
camera perspective

’ X,\ZZ.I‘




Egyszerubb arnyekteszt

void SM VS( in float4 position : POSITION,
in float4 normal : NORMAL,
uniform float4x4 MVP, LMVPT, MV, MVIT, ®
uniform float4 clightpos,
out float4 hPosition : POSITION,
out float4 tPosition : TEXCOORDO,
out float3 cnormal, clight ® )

hPosition mul (MVP, position); // to eye'’s clip space

tPosition = mul (LMVPT, position); // to depth texture space

float4 cp mul (MV, position) ; // camera space
cnormal = mul (MVIT, normal) .xyz;
clight = clightpos.xyz * cp.w - cp.xyz * clightpos.w; N
} " Returns 0/1
if it is a
void SM FS ( in float4 tPosition : TEXCOORDO,
in float3 N, L. ®
uniform float4 lightint, kd, ®
uniform sampler2D depthMap,
out float4 ocolor : COLOR )

depth texture

float costheta = max(dot(normalize(N), normalize(L)), O0);
ocolor = lightint * kd * costheta * tex2Dproj(depthMap,tPosition);

To support shadow mapping, tex2Dproj gets a 4 element texture address,
executes the homogeneous division, compares the texel to the z component and
returns to a 0/1 value indicating whether the z component is smaller than the
stored texel value.



Arnyéktérkép aliasing

The edges of shadows obtained with the shadow mapping algorithm are jagged,
which is due to the aliasing artifact.



Arnyéktérkép aliasing

' shadow map

]

The real depth is available just at discrete points in the shadow map. If the light
source has a large field of view and is far away, then a shadow map texel (called
lixel) is mapped on a larger surface area, where only one depth value is available.



Arnyéktérkép fokuszalas

' shadow map

To improve shadow map quality, a simple technique is focusing, i.e. we set the
field of view angle of the light pass as small as possible. So first, the region
visible from the camera is determined, then this region is focused on during light

pass.



Percentage Closer Filtering

shadow map

point in filtered shadow
» Shadow map: depths at discrete points
* In between: depth is a random variable Z
* P(Z > z) = shadowing factor

The depths of points that are projected between the texel centers of the shadow
map are not known, but can be treated as random variables. The objective is to
estimate the probability that at this point shadowing happens and scale down the
light intensity accordingly.

Instead of comparing the current depth to the depth in the center of the shadow
map pixel, the point’s depth is compared to four texels enclosing the current
point. This results in four 0/1 values, that are bi-linearly interpolated. This
method is called percentage closer filtering (PCF), and is automatically
supported by the tex2Dproj function of the GPU if the bi-linear filtering is
enabled on the depth texture.



R

classic shadow map 2 x 2 PCF, no focusing focusing

Classic shadow map Variance shadow map

Comparing the current depth to a few depth values in the map, we can estimate
this probability, using the one-tailed version of the Chebyshev inequality. The
resulting probability may be between 0 and 1 and can be used to smooth the
shadow boundary. This method is called variance shadow maps.



Visszaverodeés
es tores

Reflection and refraction also require the consideration of the scene as a whole and do not
allow completely independent shading of surface points. Thus these phenomena may only
be simulated by multi-pass rendering. Suppose that we have a reflective running man. To
find out what may be reflected, first the scene is photographed from the center of this
reflective object, and the result is stored in a texture. To get a complete surrounding, the
reflective object is removed, and the scene is rendered six times from the center, selecting
the faces of a cube as camera windows. The collection of these six images is called the
cube map or the environment map. It is also possible to obtain this cube map in a real
environment by taking panoramic images.

Having obtained the cube map, the scene is rendered from the point of view of the real
camera. Other objects are rendered in the normal way, but when the reflective object is
processed, special vertex and fragment shaders are enabled that compute the reflection
with the help of the prepared cube map.

When a reflective surface point is processed, its normal vector is obtained, and the view
direction is reflected (and/or refracted) at this point. To simulate reflection, we need to
know the radiance coming to this point from the reflection (and/or refraction) direction.
Unfortunately, this information is not available, what we store in the cube map is the
radiance coming to the center (from where the photographs have been made) from the
specified direction. However, if the distance of the shaded point and the cube map center
is small with respect to the distance to the environment, then we can look up the
environment map with only the reflection direction, and the fetched value is reflected
using the Fresnel function.



Visszaverddés/torés szamitas:
a sima objektum feldolgozasa

Environment map id

Pixel
CPU Vertex Raszterizacio shader
program shader Interpolacio
Pozicio
Normal Transzf. Poz.  Interpolilt

Vildg normal normal
I'ranszformaciok Vildg nézet nézeti irdny
torésmutato ;

We discuss only the final rendering of the reflective object (the creation of the
cube map and the rendering of the other objects are like a conventional rendering
algorithm). The CPU passes the shading normals and vertices of the mesh of the
reflective object to the vertex shader. The vertex shader also gets transformation
matrices and the eye in world coordinates as uniform parameters. The vertex
shader transforms the point to normalized device space for clipping and then
rasterization, and also computes the normal and view vectors in world
coordinates as vertex properties, which will follow the point and get linearly
interpolated.

The fragment shader receives the linearly interpolated world space normal and
view vectors associated with the processed fragment, computes the reflection
direction, fetches the incident radiance from the environment map, and multiplies
it with the Fresnel function to obtain the reflected radiance.



Sima objektum vertex shader

void main ( in float4 position : POSITION,
in float4 normal : NORMAL,
uniform float4x4 MVP, // modelviewproj
uniform float4x4 M, // model
uniform floatdx4 MIT, // IT of model
uniform float3 eye, // eye in world
out float4 hPos : POSITION,
out float3 Vv : TEXCOORDO,// view in world
out float3 N : TEXCOORD1)// normal in world

hPos = mul (MVP, position);

float3 p = mul (M, position).xyz; // transform to world sp.
V = eye - p;
N = mul (MIT, normal) .xyz;

To prepare for clipping, the vertex is transformed to normalized device space
(hPos).

The vertex shader computes vectors in the coordinate system of the cube map.
The cube map is usually generated by looking left/right, up/down and
forward/backward in world space, so the cube map space has the same axes as the
world space.

So the vertex is transformed to world space with modeling transform M, resulting
in X. The view direction in world space is the difference of world space eye
position and the location of the vertex in world space. The normal vector in world
space is obtained with the inverse-transpose of the modeling transform.

Viewing direction V and normal N are passed down the pipeline in
TEXCOORDO and TEXCOORD1 registers.



Sima objektum
fragment shader

main (
in float3 V : TEXCOORDO,
in float3 N : TEXCOORD1,
uniform float n, // tdérésmutatd
uniform float FO0, // FO=[(n-1)/(n+1)]?2
uniform samplerCUBE envMap,

out float3 color )

v normalize (V) ;

N = normalize (N) ;

float3 T = refract(V, N, 1/n);

float3 R = reflect(V, N);

float3 refractedRad = texCUBE (envMap, T).rgb;
float3 reflectedRad = texCUBE (envMap, R) .rgb;
float F = FO + (1-F0) * pow(l-dot(N,V), 5);
color = F * reflectedRad + (1-F) * refractedRad;

The reflective triangle is rasterized while the world space view direction and
normal vector are interpolated. At a given fragment, we normalize these vectors
and compute refraction direction T and reflection direction R. Refraction
computation is based on the Snellius-Descartes law and is done by the refract Cg
function taking also the reciprocal of the index of refraction into account. The
reflection computation is based on the reflection law and is done with the reflect
Cg function. We look up the environment map in the reflection and refraction
directions to get the incident illumination. The Fresnel funciton is computed, and
the reflected and refracted radiances are added up weighting them with the
Fresnel or 1-Fresnel, respectively.



Lokalizalt
kornyezet
lekepzes

If the cube map texels also store the distance of the visible point from the center
of the cube map, the real reflected/refracted point can be searched for. This is
called localization.



Diffuz indirekt .—-

|IIum|naC|o

If we blur or concolve the environment map (cube map) with the cosine or with
the power of cosine functions, then diffuse or glossy indirect illumination can be
simulated.



Screen-Space Ambient Occlusion

z-buffer A

Ambient occlusion computes just how open the scene is around the shaded point
and scales ambient illumination accordingly. The computation of the openness
may be based on the content of the depth buffer.



Ambient Occlusion

(R -Tx




Autos jatek

The second demo game is a driving simulator game. Here the car is reflective, and the
wheels generate caustics. In this arena the goal is to push bit glass bottles that are
reflective/refractive and also caustic generators.

When the car moves in this corridor, we can observe the indirect diffuse/glossy
reflections as well.

In the other arena, gas tanks should be hit, where the explosions are generated with
spherical billboards.



Urallomas










Geometria arnyalo

Proceduralis
geometria

Catmull-Clark
subdivision

The geometry shader being between the vertex shader and the clipping using, can
change the type or topology of the primitive. This can be used, for example, to
execute on-the-fly subdivision smoothing, or to produce procedural geometry.
Procedural geometry is created inside the GPU and rendered right away, so
expensive CPU to GPU transfer can be eliminated, and the storage requirement
can be significantly reduced (when an element is created, it is immediately
rendered and its storage space is released).



GPGPU

_ Az eredménytomb mely
Geometria: elemeit szamitjuk ki
~haromszogek”

Eredmény

Bemeneti #
tomb

adat

Bemeneti kép | = Képszintézis |=>| Kimeneti kep

Textarak Minden kimeneti tombelemre Textura vagy
ugyanaz az algoritmus, rasztertar
mas adatokra: SIMD

Nowadays, a GPU has supercomputer performance (over two teraflops), which is two
magnitude higher than a CPU has, and the gap between GPUs and CPUs grows
constantly. So GPUs are worth using not only for graphics but for the solution of general
purpose computation as well. As GPUs became programmable, this is a feasible
approach.

So far, we assumed that the “main input” of the rendering process is the geometry
containing a list of triangles, which is processed by the pipeline, and during the
rasterization of this geometry, the fragments onto this geometry is projected are
identified. Fragment processing may involve texture fetches, so the texture memory can
be imagined as a “secondary input”. The output of rendering is always the 2D array of
pixels, which can be the frame buffer or stored in the texture memory as well.

To make this model more appropriate for general purpose, i.e. non-graphics
computations, we consider the texture memory, which is a 1D, 2D, or 3D array as the
main input of the algorithm and geometry is only supplied to get the fragment shader to
be executed for each pixel of the output image. The simplest geometry for such purpose
is a quad that covers the full viewport. When this quad is rendered, the fragment shader
will run for each of the pixels, where an algorithm can be executed that can access the
textures.

Thus, interpreting the texture as an input array, the image as an output array, and the



fragment shader as a function that is computed for every element of the output array, we
have a parallel computer system. This system is SIMD (Single Instruction Multiple Data,
or more precisely, Single Algorithm Multiple Data) since the same fragment shader
program will be executed in parallel computing a result on different data.

SIMD like parallelism is useful in many applications like:
1. Large matrix-vector multiplication,

Image filtering,

Differential equations on numerical grids,

Monte Carlo methods,

Etc.

ok~ wn



(Teljes képernyos” téglalap (CPU):
glViewport(0, 0, HRES, VRES)
glBegin(GL_QUADS);

glTexCoord2f(1,1); glVertex4f(-1,-1, 0, 1);
glTexCoord2f(1,0); glVertex4f(-1, 1, 0, 1);
glTexCoord2f(0,0); glVertex4f( 1, 1, 0, 1);
glTexCoord2f(0,1); glVertex4f( 1,-1, 0, 1);
glEnd( );

Vertex shader (Cq):

void main ( in float4 Pos : POSITION,
in float2 Tex : TEXCOORDO,
out float4 hPos : POSITION, Melyik
out float2 oTex : TEXCOORDO ) { kimeneti

hPos = Pos; témbel {
olex = Tex; ombeleme

} szamitjuk

Fragment shader (Cq):
Bemeneti void main ( in float2 Tex *™EXCOORDO,

uniform sampler2D bemAdat, z
adat out float4 result : COLOR ) { Ereq_meny
result = Bemnenetr képbdl szamitott adat a tomb
tex2D(bemAdat, 1{(Tex)) alapjan;

SIMD, 1.e. vektorprocesszalas

In a general GPGPU application the CPU renders a full viewport quad where
vertices are directly specified in normalized device space.

The vertex shader copies the vertex without transformation since it is already in
normalized device space and the texture coordinate associated with this quad.

The fragment shader gets the interpolated texture coordinate which tells the
shader which output element it computes and thus different fragment shaders
would use different input data based on this (it would not make sense to compute
the same result many times). The fragment shader can implement any function F
that is based in the Input data and also on the Texture coordinate identifying the
output index.



Tex—du))/2/du;
Tex—dv))/2/dv;

An edge detection filter would compute the length of the gradient to locate pixels
where the image changes significantly.



CUDA (OpenCL)

GPU

Kernel program:

‘ Multiprocessor N

’ Multiprocessor 2
Threads

Multiprocessor 1
Shacst Mot Shared
block, block, memory

SIMD

Warp, Warp, ... execution

SIMD

The approach discussed so far became very attractive in the community that had some
graphics background, since they could understand concepts like normalized device space,
clipping, vertex shader, texture coordinates, etc. However, non-graphics programmers did
not like it.

To help the development for those who are not familiar with the concepts of computer
graphics, NVIDIA developed the CUDA (Compute Unified Device Architecture)
framework, then a vendor independent version, called OpenCL (supported by AMD) was
also born. These GPGPU frameworks present the GPU to the programmer as a large
collection of general purpose processors and memory, but do not allow the access of
fixed function elements like, depth buffering, alpha blending, clipping or rasterization.

CUDA presents the GPU as a set of N (1..128...) independent multiprocessors, where
each multiprocessor contains M (e.g. 8) scalar processors sharing the instruction unit
and are connected by a fast internal shared memory. Each scalar processor has local
registers that can store the data of many threads at a time. As scalar processors of a single
multiprocessor share the instruction unit, they always execute the very same machine
instruction in a SIMD like fashion. Note that this means that programs having if type
branches where different threads may go into different directions are executed in a way
that always all branches are executed, but in dummy branches the write operations are
disabled. The parallel threads executed on a multiprocessors at a time in a SIMD style are
called the warp (a word originated in the terminology of weaving). Interestingly the
number of threads in a warp is usually larger than M, if M=8, then the typical number of



the warp size is 32. The reason is that the execution of the scalar processors is fast, so
while a machine instruction is fetched from the memory, it can execute four instructions.
So, to keep it busy, each scalar processor runs four threads at a time, and executes an
instruction on each of them (their data are stored in the registers, so switching from one
thread to the other means just the change of the base address in the register file). Threads
of multiple warps can be assigned to a scalar processor, which has the advantage that
when a warp is stopped due to a slow memory access, then other warps may run during
the memory fetch. The threads assigned to a single multiprocessor are called the block.

A GPU has many multiprocessors so they can simultaneously execute many blocks. If the
number of blocks is greater than the number of multiprocessors, then they are executed
sequentially one after the other.



Két N elem(l vektor osszeadasa

#include <cuda.h> A GPU-n fut, de a CPU-rol is hivhato

__global — vAddVectorGPU( float *C, float *A, float *B, int N ) {
int i = blockIdx.x * blockDim.x + threadIdx.x; jlazonositd

3 Q<N Cl= A[‘I]\'fgm’\\‘ 0,..., gridDim.x-1 0,..., blockDim.x-1

const int N = 100000;
const int Nb = N * sizeof(float);
float Ccpu[N], Acpu[N], Bcpu[N];

int main () {

... [/ Acpu és Bcpu tombok feltoltése

float *Agpu, *Bgpu, *Cgpu;

cudaMalloc(&Agpu, Nb); cudaMalloc(&Bgpu, Nb); cudaMalloc(&Cgpu, Nb);
cudaMemcpy(Agpu, Acpu, Nb, cudaMemcpyHostToDevice);
cudaMemcpy(Bgpu, Bcpu, Nb, cudaMemcpyHostToDevice);

int blockDim = 256; // #threads egy blokkban: 128, 256, 512
int gridDim = (N + blockDim — 1) / blockDim; // #blocks

AddVectorGPU< < <gridDim, blockDim>>>(Cgpu, Agpu, Bgpu, N):

cudaMemcpy(Ccpu, Cgpu, Nb, cudaMemcpyDeviceToHost);
cudaFree(Agpu); cudaFree(Bgpu); cudaFree(Cgpu);
... // A Ccpu haszndlata

b

As an example, we present a CPU and CUDA program that adds two, large
arrays. In the CUDA framework, CPU and GPU functions may be mixed and
written in the same file. We can use C (or C++) for all types of functions.
Function types can be used to declare whether a function runs on the CPU (this is
the default), runs on the GPU but can be called from the CPU (global), or runs on
the GPU and can only be called from the GPU. Before a conventional C compiler
runs, a CUDA pre-processor separates functions for different devices and
establishes the proper ways of parameter passing.

In this example, the main function is on the CPU, which calls a parallel GPU
function called AddVectorGPU. When this function is called, parameters can be
passed to it, and we should also specify how many threads of this function should
be started in total and how the threads are distributed among the multiprocessors.
To do that, enclosed in <<< and >>>, we define the grid dimension specifying
how many blocks are started (how many multiprocessors are assumed) and the
block dimension describing how many threads a single multiprocessor should
run. The blockDim is a multiple of the warp size, and 256 is a generally good
number.

In this example, we add two N element vectors where a single thread is
responsible for adding just a single element of the vector. So, altogether, we need
to start N threads, which is distributed into N/blockDim blocks of blockDim
threads in a block (the program is a little more complicated, because it also
handles the case when N/blockDim is not an integer number).



The GPU function gets not only the passed variables, but also invisible input defining
which multiprocessor executes this thread (blockldx) and also the index of this thread
among the threads running on the same multiprocessor (threadldx). This is very similar to
the non-visible this pointer in C++ member functions. These numbers can be used to
compute a unique index for the thread, which defines what output this thread should
compute.



2D hoaramlas, diffuzio

e Anyag-energia megorzes




3’ LB *
0 1 t T(float* array2d,

float dTx2 = (T(o, N, x+1,y) —2*T(o, N, x, ¥) + T(o, N, x-1
float dTy2 = (T(o, N, x, y+1) —=2* T(o, N, x, y) + T(o, N, X, )/(dy*dy) ;
n[y*N+x] = (T(b, N, x, y)==0)? T(o, N, X, y) + g * (dTx2 + dTy2) *dt : T(o, N, X, ¥);

const int N = 128, Nb = N*N*sizeof(float); // number of bytes
float Tcpu[N*N] = /*initial+boundary condition*/ , Bcpu[N*N] = /*1-0 mask*/

int main () {
float *Tgpul, *Tgpu2, *Bgpu; 0
const float g = 3, dx=1, dy=1, dt = 0.1, tend=10;
cudaMalloc(&Tgpui, Nb); cudaMemcpy(Tgpul, Tcpu, Nb, cudaMemcpyHostToDevice);

cudaMalloc(&Tgpu2, Nb);
cudaMalloc(&Bgpu, Nb); cudaMemcpy(Bgpu, Bcpu, Nb, cudaMemcpyHostToDevice);

for(floatt = 0; t < tend; t +=dt) {
Diffuse<<<N, N>>>(Tgpul, Tgpu2, Bgpuy, g, dx, dy, dt, N);
Diffuse<<<N, N>>>(Tgpu2, Tgpul, Bgpu, g, dx, dy, dt, N);
:

cudaMemcpy(Tcpu, Tgpul, nb, cudaMemcpyDeviceToHost);
cudaFree(Tgpul); cudaFree(Tgpu2);




Mikor jo?

Parhuzamos algoritmus (>10k szal):
A probléma elemzeésével kezdddik!

Gy(yjtd tipusu algoritmus (nincsenek irasi
memoriatitkozések)

Kevés feltételes utasitas (thread divergencia)
Adatlokalitas

Szamitasintenziv




Tudomanyos (mérnoki) szamitasok

Ido és térvaltozok szerinti
differencialok/integralok:
Parcialis diff egyenletek

homogen linearis
transzformaci@smatrika || |




Numerikus megoldas

— Tér-ido differencial egyenletek

— 1d0 és térkoordinatak diszkretizalasa (véges elem)
— 1d6: diszkrét ido vagy diszkrét esemény

— Tér: Lagrange-i megkozelités

‘} ﬁ’u & o

Mozgd részecskék
@

Euler-i megkdzelités

Tér mintavételezése
rogzitett racson
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Euler-i folyadek
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Euler-i folyadék

V-1=0

»

Eulerian solution of Navier-Stokes differential equation. To numerically solve
differential equations, we should discretize time and space. The Eulerian
approach discretizes space by setting up a regular grid where variables are stored.
At the grid points, the derivatives are evaluated with finite differences. The new
value of a grid point will be a function of the current value and the values in the
neighboring grid point, which is like an image processing algorithm. A thread can
update a single grid point.



Lagrange-i modszer:
Részecske rendszer, N-body

F./m=a,

v, += a,At
r;+= v, At

Elorelep6 Euler séma.
Helyette: Visszalépd Euler, Runte-Kutta, Midpoint, Verlet, ...




Lagrange-i folyadékaramlas
SPH=Smoothed Particle Hydrodynamics

Houdini=




Térfogatvizualizacid

Szirmay-Kalos Laszlo




Terfogati modellek
(skalar mezok)

3D tér pontjaiban egy skalar érték

» Skalar: homérséklet, strtiség

&

v .y Arnldc: 2 v 1117
nyomés, potencial, ... tarolas: 3D textura

* Szarmazas: Euler-1 szimulacio, vagy ,,voxel tomb
Rekonstrukeié (tomografia)




Térfogati modell megjelenitése
e Megjelenités fényszord anyag (participating media)
analogiajat felhasznalva (belsejébe belelatunk)

grad v Transzfer Kep

./' ] fiiggvény ; : Szintézis

Siiriiség + derivaltak Optikai paraméterek

H cwslc
@

v

e Adott szintfeliilet kiemelése (kiilsot lehamozzuk)




Fényszord kozeg

Hataskeresztmetszet,
alias kioltasi tényez6

-ds = P(iitkdzés)

e Albedo a: a nem-elnyelodés valoszinlisége
feltéve, hogy az litkozés bekovetkezett

e Fekete test: albedo =0




Sugarsuriséeg
valtozasa

L(s+ds)
L(stds)=L(s) — L(s) o(s)ds + // Kiszoérdédas+abszorbeid

Le(s)-ds + // Emisszi0
G(S)-a(x)'dS‘I/(m‘,m)L’(m‘)dco‘ // Beszorodas

dL(s)/ds = —L(s) - o(s)|+Le(s)+Lnscatter(s)

Megoldas fényelnyeld kozegre -
(emisszid és beszorodas nines): | L(s)= L( ,)'CX}’(_LG('S)dS,,),




Szorodas

Klein-Nishina:

Szorodott,

Erkez6 foton \ . A e
‘ T T =#[== =|=]sin’8
foton ~¢ £ [:,j ( 1:'}

E utkozés

Rayleigh:
Compton formula: P(0) = (‘(1 +cos”’ 9)




Sugar masirozas (ray marching)

Megoldas: dL(s)/ds = —L(s)-o(s) +Lé(s)+Linscatter(s)

: L(s + As) L(s)
As

opacitas hozza 1|'11 ulas

atlatszosag



Back-to-front ray marching

for(s=0;s<T;s+= As) {
L=(1-a(s)) - L+ C(s);




Front-to-back ray marching

L*(s—As)=L*(s)+(1— ax(s)) - C(s)
| —ok(s—As)=(1—o(s)) - (1—0u(s))

L =p*=1);

for(s=T;s>0;5s —=As) {
L* +=(1-a*) - C(s);
o = |—(1—ax*) - (1-0(s));
if (o* > 1—¢) break;




Voxel szin €s opacitas:
Transfer func: (C, a)=T(v fuggv)- As
e Rontgen: (C, @)=T(v(x,y,2)) As

— opacitas = v(x,y,z)  4s
— L(0) =1, egyébkeént C(s)=0
e Klasszikus arnyalasi modellek

— opacitas: v osztalyozasa

— C = arnyalasi modell (diffuz + Phong)

e normal = grad v
e opacitas *= | grad v |
e Magasabb rendii derivalt (gorbiilet)

e Transzlucens anyagok (subsurface scattering)




o= pow(v/vmax, aexp)-As
C = HLS((v/imax +rot):360, 0.5, 1) s




Klasszikus BRDF modellek

First hit ray casting:
Diffiz+Phong arnyalas

Csont 0=1, masé=0 Hus o=1, masé=0




lllusztrativ vizualizacio
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lllusztrativ vizualizacio




Transzlucens megjelenités

A

z.

Felez6 vektor




y

Transzlucens megjelenites




Szintvonal, szintfelulet




Marching cubes
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First hit (isosurface) ray casting

v(x,),z) < szint




GPU first hit ray-casting

p = lookat+ X right + Y up

X X m[=1.1]




CPU first hit ray-casting

For each pixel — G————Full screen quad
Find pixel center p ————— [nterpolation
raydir = normalize(p — eye); from the corners
Find exit and entry
for(t = entry; t < exit; t+=dt) {

q = eye + raydir * t;

if (volume[q] > isovalue) break;

|
J

normal vector estimation; e central differences
illumination




GPU Isosurface ray-casting

volume

: e . Ray casting
eye, isolevel, material/light properties

Pixel
CPU Vertex Rasterization shader
program shader Interpolation

Vertices

of the hpos=fullscreen  ray/window

window
quad

textcoords

Volume




CPU program - OpenGL display

void Display( ) {
// PASS: non uniform parameters
glBegin( GL_QUADS ) ;
Vector p = lookat - Right + Up;
glTexCoord3f(p.x, p.Y. P.2); glVertex3f(-1, 1, 0);

P = lookat - Right - Up;
glTexCoord3f(p.x, p.y. P.z); glVertex3f(-1, -1, 0);
p = lookat + Right - Up;
glTexCoord3f(p.x, p.Y. P.z); glVertex3f(1l, -1, 0);
p = lookat + Right + Up;

glTexCoord3f(p.x, pP.Y. P.2); glVertex3f(1, 1, 0);
glEnd() ;

Camera window as texture coordinates Full screen quad




Ray casting: vertex shader

void VertexShader (
in float4 hPosIn : POSITION,
in float3 wPosIn : TEXCOORDO,

out floatd4d hPosOut : POSITION,
out float3 wPosOut : TEXCOORDO )

hPosOut = hPosIn;
wPosOut = wPosIn;




Ray casting: fragment shader

void FragmentShader( in float3 p : TEXCOORDO, // point on window
uniform float3 eye,
uniform sampler3D volume, // voxels
uniform float isolevel,
uniform float3 lightdir, lightint, kd ®
out float3 color : COLOR )

float3 raydir = normalize(p - eye);

float3 t0 = (float3(0,0,0)-eye)/raydir;

float3 tl = (float3(1,1,1)-eye)/raydir;

float3 ti = min(t0, tl); ti.y—>to.y
float3 to = max(t0, tl1);

float entry = max(max(ti.x, ti.y), ti.z);

float exit = min(min(to.x, to.y), to.z);

color = float(0, 0, 0);

bool found = (exit <= entry):

cont’d..




Ray casting fragment shader cont'd

if ( 'found ) {
float3 g, normal;
float dt = (exit - entry) / STEPS;
for(t = entry; t < exit; t += dt) {
if ( 'found ) {
q = eye + raydir * t;
if (tex3D(volume, q).r > isolevel) found = true;

}
}
if ( found ) {
normal.x =tex3d(volume, float3(1/RES,0,0)) -
tex3d(volume, float3(1/RES,0,0)) ;
normal.y =tex3d(volume, float3(0,1/RES,0)) -
tex3d (volume, float3(0,1/RES,0)) ;
normal.z =tex3d(volume, float3(0,0,1/RES)) -
tex3d(volume, float3(0,0,1/RES)) ;
normal normalize( normal );
color = lightint * kd * max(dot(lightdir, normal), 0);




Tomografia

' Abszorpcios Emisszios

L(s)= L(0)-exp(-Jo(s)ds) L(s)= JL4(s)ds
[o(s)ds = — log(L(s)/L(0))




X-ray Computed Tomography
Forgatis

X-ray forras
(CRT)

T

sugarak

4




Mediso NanoPET/CT

One particular equipment we work with is the NanoPet/CT of Mediso, developed
for pharmaceutical research and therefore scans mice and rats. The gamma
photon detector structure is shown here, which can measure several hundred
million lines, which are distributed not only in 2D slices but forming a complex
3D structure.

From the measurements, we should reconstruct the density of the radiotracer
material.

30



Bigger boys need big toys:
AnyScan PET/CT




Tomografias rekonstrukcio

Having made the measurements, we have the integrals of the scalar field along
many lines.

The question is how scalar fields can be reconstructed from its line integrals. A
very simple approach would be backprojection, which takes a line and distributes
the measured integral along it uniformly. As only the integral of the values is
available, we cannot do more with a single line. Repeating the same step for all
lines, the reconstructed value will be higher where many lines of large integrals
meet, so we get a rough approximation of the original scalar field. Clearly, it is
blurred and distorted approximation since a point source will be backprojected as
a line and the total activity after backprojection will be larger than expected as
line cross each other.



Szurt visszavetités
(FBP=Filtered backprojection)

i(x,1)=3(x,y) Salyfiiggvény: w(x,v)=w(r) ~ 1/r
Méres +

Visszavetités

R Kkor:
[Iw(x,y) dxdy=/" ’TJ-I‘ w(r) rdrdg=

=271 _[H'.-'.-‘[_.f‘)l’df' ~R

Korrekcido Fourier térben:
o(x.y)=i(x,y) @ w(x,y) =y 7.7 ol 0,0 = £5,i[0.0]

Rampa sziird

F 7 il o,0) = £F,0l0,q)] - |o]| |

A standard and old method to improve this naive approach is filtered back
projection, which examines what happens with a point source if it is measured
and then back projected, and corrects the back projected data accordingly. Let us
consider a point source, so the measured scalar field is modeled as a Dirac delta.
After backprojection, lines crossing the original point source will have non-zero
activity and the reconstructed activity distribution is denoted by function w. This
depends just on the distance from the point source due to symmetry, and its
integral on a circle of radius R must be proportional to R since the contribution of
each constant activity line segment grows linearly with the length. From this, we
can easily prove that impulse response of the naive backprojection is a function
that decreases proportionally with the distance.

Based on the superposition principle, the measurement and back projection of an
arbitrary input signal can be expressed as the convolution of th input signal and
the impulse response. In Fourier domain, convolution becomes multiplication and
the Fourier transform, so the blurring can be compensated by dividing the Fourier
transform of the backprojected signal with the transfer function of the system,
which is the Fourier transform the impulse response. This requires filtering with a
so called ramp filter, which is proportional to the absolute value of the frequency
vector.



If the signal to noise ratio is not high enough, we get nothing but a mess of noise after
reconstruction.

This method is fast if multi-dimensional fast Fourier transformation is applied, but it has a
significant problem. Ramp filter is a high-pass filter, so not only the blurring is eliminated

but high frequency noise is also amplified.



Zaj!

Becsapodasok véletlen események!

Emisszios tomografia:
Poisson eloszlas

Nagy szamoky," /vénye?

Noise can be significant especially in emission tomography, due to the random
nature of the measurement process and the ignored physical effects.

For example, when a positron-electron pair is annihilated, the direction of the
generated photon pair will be random due to quantum effects. The number of hits
ina LOR is also random and follows Poisson distribution.

It is tempting that we believe in the theorem of large numbers and state that event
frequency is close to the expected values, but it is a very bad idea. In practical
PET measurements, at least when we do not wish to kill the patient, the number
of hits in a detector is small, so we are very far from the confortable zone offered
by the theorem of large numbers.
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Algebrai visszavetités

Lin egvenlet (V<D):
d=A-v, d=[d,

(D) (DxV) (V) V= [1:|




Expectation Maximization

Rttt Veéletlen méresi

* A .
il folyamat W

Mi a v ha tudjuk d-t?

\ 4
A

en a mérési eredményt maximalja P(d|v
* Likelihood maximalizalas: logP
* Elony: a mérés statisztikai modelljét is figyelembe veszi

If we have a statistical model of the measurement process, that is we know the
distribution of the hit numbers, we can make it even better since this information
can be built into the reconstruction and can replace the blind Euclidean distance.
The concept is called maximum likelihood estimation in statistics. Based on the
observed or measured values, we search for an activity field that would produce
this set of measurements with the highest probability. So again, we end up to
solve an optimization problem but not the probability needs to be maximized.
The typical trick is to maximize the logarithm of this probability which would not
modify the optimum since the logarithm is a monotonous function but turns
products to sums which makes our life much easier when derivatives are
computed during a gradient search.
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PET: iterativ séma

n+l)
X, =

T Poisson és pozitivitasi kényszer

LOR L : annak valosziniisege,
voxel V W hogy a V' voxelben
bekovetkezett bomlast az
L LOR detektalja




lterativ séma

l Skalarmezo

T
<>

\

Osszevetés a
mert értékekkel

S

Skalarmez6
korrekcidja




Inverz problémak

Projekcio | Aktivitas || Beiitések szama |
(Tomograf) | eloszlas || a detektorokban

fX)=y=y+nL_Jx=..]

e [ll-posed: nincs megoldas vagy nem egyértelmii.
e Nem ismerjiik n-et (zaj).

e Kozelité megoldasokbol melyik (zaj hatasa)?

e Plusz informacio bevitele: regularizacio




Megoldasi semak

Algebrai Valdszintiségi
min|f(x) - v/ max {log P(y| x);

2-es norma y Gauss eloszlasu

Kullback-Leibler < y Poisson eloszlasu
divergencia




Overfitting

n=10 n =30 n=>50 n="70




Regularizacio

Regularizacios Zajos megoldasok

Likelihood : 22 ;
paraméter bilintetése

min {— log K‘P(y | X) + Al?cl(x)}

® R(x),rossz” megoldasoknal nagy, ,,j0” megoldasoknal
kicsi (tokéletes megoldast ne biintesd, de nem ismerjuk),
> TE> 3 ,‘ .'
konvex fliggvény. |f (n)dt

— Teljes variacio (TV):

R(x)= I‘V,r(v)ki\)

X




Line Of Response
(LOR)

Additionally, noise can also come from the physical phenomena that are ignored
in the simple backprojection operation. In reality, when a positron is born, it is
not annihilated instantly but it may take an excursion in the material before it
meets and electron. This is called positron range, which depends on the isothope
and on the material as well. When the photon pair is generated, the two photons
are not exactly parallel if the original impulse of the electron and positron was
not exactly zero. The photons may get absorbed or scattered in the measured
object, so they do not necessarily follow a straight path. Photons may also be
scattered in the detector grid, so a different detector will absorb it not the one
where it arrived. Finally, the absorption detection may also make random errors.

At the end, the LOR reported by the system may be very far and may not go
through the point where the positron was born.
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Positron range
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Szorodas a testben

Nélkiile




Szorodas a detektorban

+ scattering 3382 x 845 res
in detectors <0.1 mm voxels




Fraktalok

Szirmay-Kalos Laszlo




Fraktalok

Hausdorff dimenzio

D= (logN) / (log 1/r)




D= (log4) / (log 3) =1.26

Koch gorbe




Nem onhasonlo objektumok
dimenzioja

Vonalzo ( /

Hossz( /[ )=[db=INm =] (1/rP)m=

:/(]{,’r ) D—1/71P-

D =-log Hossz(/)/log/+ 1




Dimenziomeéres = hosszmeéres

log Hossz( /)




Fraktalok eldallitasa

Matematikai gépek:
* Brown mozgas
» Kaotikus dinamikus rendszerek




Brown mozgas - Wiener féle
sztochasztikus folyamat

e Sztochasztikus folyamat (véletlen fliggvény)

e Trajektoriak folytonosak
e Fiiggetlen ndvekményii folyamat
e Novekmények 0 varhato értékii normalis
eloszlas:
— a fliggetlen novekményliségbdl, a szoras az
intervallum hosszaval aranyos




Brown mozgas alkalmazasa

O O,




Kaotikus dinamikus rendszer:
nyulak kis C ertekre
B—C5 (1-5)




Kaotikus dinamikus rendszer:
nyulak kozepes C értékre




Kaotikus dinamikus rendszer:
nyulak nagy C értéekre




Pseudo véletlenszam generator

« [teralt fiiggvény:

¥oi— FLF,)

n+l

* ve¢letlenként hat

[\\/\ / \[\{\/\ F nagy derivalt!







Jo F

e Siirlin kitolti a négyzetet
e Mindeniitt nagy derivalt
e a [0, 1]-ben van

periodicity
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f !
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Aperiodic length




Kongruens generator

F(r)=1{¢or+c? o r+c tort része
‘tk_ ‘ o
L,I gy




Kaotikus rendszerek a sikon




Z —> 72

divergens




Attraktor eldallitasa

e Attraktor a labilis és a stabilis tartomany
hatara: kit6ltott attraktor = amely nem
divergens

z.2: ha z_< oo akkor fekete

=1

e Attraktorhoz konvergalunk, ha az stabil

—z,., = z,? attraktora labilis

“ntl




Inverz iteracios modszer
H = F(H) - H=F!1(H)

e f
z, 2 =%z

“n+1 “n+]

o o
l”,,] \’n

¢) = ¢n/2 + {O*] : T

n+l

I
{0,1}.{0,1}{0,1}... 'm

n n-1 n-2

Nem lehet csak egy értékkel dolgozni ???




Juliahalmaz: z— Z2+c¢




Kitoltott Julia halmaz: algoritmus

Imz

FilledJuliaDraw ()
FORY=0TO Ymax DO
FOR X =0TO Xmax DO
ViewportWindow(X,Y — X, y)
Z=x+jy
FORi=0TOnDOz=27*+¢
IF |z| > “infinity” THEN WRITE(X,Y, white)
ELSE WRITE(X.,Y, black)
ENDFOR
ENDFOR
END




Kitoltott Julia halmaz: kép




Julia halmaz inverz iteracioval

JuliaDrawlInverselterate ()
Kezdeti z érték valasztas
FORi=0TOn DO
x=Rez, y=Imz
IF ClipWindow(x, y)
WindowViewport(x,y = X, Y)
Pixel(X, Y) = fekete
ENDIF
z=Vz-c¢
if (rand()>0.5)z=-z
ENDFOR
END




Julia halmaz

Ssszefiiggd _I}t?l'ﬂ Usizcluggu,
Cantor féle halmaz




Julia halmaz 6sszefuggdsége




Mandelbrot halmaz

Azon ¢ komplex szamok, amelyekre a

z — z2>+ ¢ Julia halmaza 6sszefliggd

L —




Mandelbrot halmaz, algoritmus

MandelbrotDraw ()
FORY=0TO Ymax DO
FOR X=0TO Xmax DO
ViewportWindow(X,Y — x,y)
c=x+jy
z=10
FORi=0TOnDOz=2*+¢
IF |z| > *infinity” THEN WRITE(X.,Y, white)
ELSE WRITE(X.,Y, black)
ENDFOR
ENDFOR
END




,Matematikat kijatszo”
Mandelbrot halmazok

S




Inverz feladat: IFS modellezés

U Attraktor:
H = F(

H)

F: szabadon vezérelheto, legyen stabil attraktora




F: tobbertéku linearis leképzes

F=W,vW,v..vW, ‘

Wxy)=[ax+by+c dc+ey+f]  Stabilitis = .

kontrakcio

H=W,H)vvW,(Hv..UW,(H) ‘




IFS rajzolas:
iteracios algoritmus

IFSDraw ()
Legyen [x,y] = [x,y] A, + q, megoldasa a kezdé [x,y]|
FORi=0TOnDO
IF ClipWindow(x, y)
WindowViewport(x, y = X, Y)
Write(X, Y, color);
ENDIF
Valassz k-t p, valosziniiséggel
[X,y] = [x,Y] Ay + qy
ENDFOR
END




Egyszerl IFS-ek
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Globalis illuminacioé (Gl)

Szirmay-Kalos Laszlo

Monte-Carlo methods, random number generation.

Practical application: rendering in computer graphics



Arnyalasi egyenlet

Radiancia = Emisszio + Megvilagitas * Visszaverddeés

L(x, ®)=L¢(x, ®)+ J'Q Ly, o) f(®’,®)cosd’ do’




Gl megoldas
® Lokalis illuminacio
L=L+TL ~L+TL*
® Expanzid

L=LA+TL =L+ TLe+ T?L =

P lels b UL =X Thc=

sl (L +...))

® [teracio
_ 7€
Ln =L TLn-/




Kovetett fenyutak:
Lokalis illuminacio

The evaluation of high-dimensional integrals is, of course, rather time-
consuming, thus different algorithms take drastic simplifications to increase the
computational speed.

Local illumination algorithms consider only those light paths that connect the
light source to the eye by a single reflection and ignore indirect illumination
completely. The resulting image cannot display mirroring and refracting objects
and those points that are not visible from the light sources are dark.

Recursive ray-tracing, on the other hand, allow indirect illumination coming from
the ideal reflection and refraction directions, and thus introduces ideal mirrors
and refracting objects.

However, this is still just a fraction of the indirect illumination, which could be
simulated only by physically valid global illumination algorithms. Note, for
example, that the diffuse back wall do not illuminate the spheres in the image
obtained with ray-tracing.



Kovetett fenyutak:
Sugarkovetes




Kovetett fenyutak:
Globalis illuminacio =




Numerikus integralas

[f@) dz=~1/MZf(z)
Af

M minta

=

Hiba = Af72/M-1/M-M= Af72/M=0(M")

Let us consider the problem of dense samples used to estimate an integral.
Suppose, for the sake of simplicity, that the integral is one-dimensional and the
domain is the unit interval. The simplest integration rule place samples regularly
in the domain, evaluates the integrand at these samples, and approximates the
area below the function by the total area these bricks. This results in the
following sum that approximates the integral.

The error of the integration is the total area of the triangle-like objects between
the function curve and the bricks, which equals to the product of the

average height of the triangles, the base, and the number of triangles.

We can conclude that the error is proportional to the total change, called variation
of the function, and inversely proportional to the number of samples.



Magasabb dimenziokban

x

. Idx =i F(x) dx
X

F(x)

n =M mintaszam

Error=0(n"") = O(M?">)




Surd mintak magasabb
dimenziokban

Determinisztikus,
Véletlen: Alacsony diszkrepancia
Monte Carlo method quasi Monte Carlo




Integral = varhato erték

_[f(Z) dz= _[f(z)/p(z) -p(z) dz = 100 samples/pixel
=E[f (2)/p(2)] = 1M Z fiz,)/p(z,,)

Hiba < 3.( f/p szorasa) -M7

99.7% konfidencia szinttel

Monte-Carlo integration can also be understood in the following way. In order to
evaluate an integral, let us divide and multiply the integrand by a probability
density p. Obviously, it does not make any difference.

Looking at this formula, we can realize that this is the expected value of random
variable f/p. According to the theorem of large numbers, expected values can be
well approximated by averages. Thus taking M samples obtained with probability
density p, this average will be a good estimate for the original integral.

The integration error will be proportional to the variation of f/p and inversely
proportional to the square root of the number of samples.



Fontossag szerinti
mintavételezes

rossz

hasonl6 f/p mintak Ritka, nagy f//p mintak

In order to reduce the error, the variation of f/p should be small, that is where the
integrand is large, the probability density should also be large. It means that the
sampling with this probability density will place more samples where the
integrand is large. This concept is called importance sampling.

This figure compares a good and a bad sampling densities. In the first case the

f/p terms in the approximating average will be similar, thus the average remains
nearly constant as we add new samples.

In the second case, the important region is sampled rarely, thus the approximating
average contains many small values when a very large f/p value appears. The
corresponding pixel color is dark and suddenly it becomes very bright and
remains bright for a long time. This situation should be avoided.



Veletlen bolyongas

pixel QQ
L

. =I" +.‘-Q Jm ((O )
v: visszaverddés stiriiség
® BRDF mintavétel: aranyos f, cos6’

® Fényforras mintavétel

According to importance sampling, when the next step is sampled, we have to
prefer those directions from which significant light intensity can be transferred.
This depends on two factors, on the incoming intensity and on the material
properties that express the ratio of the outgoing and incoming intensities for two
particular directions.

Unfortunately, the incoming intensity is not known since we are just about to
compute it, thus we have to take approximations. Either we can prefer those

continuation directions from which the reflection is likely, or we can continue
towards the light sources hoping that the incoming illumination is significant
from there. The first approach is called BDF sampling, while the second
approach is light source sampling.



DiffUz BRDF mintavételezés

d(, iA/Cose

Eldobott mintak

1. Egyenletes mintak az egységnégyzetben
2. Koron kiviihh mintak eldobasa
do{x=r, y=r,} while (x2+y*>1)
3. Gombre vetités
z=v1-x2-y?




Veégtelen dimenzids integralok:
Orosz rulett

I. MC integral:

Iwy(Le +...) do,= E[wy(L® +...) /p(®,)]= E[ L ]
2. Szamitsd ki s valdszintuséggel, kiilonben 0
3. Kompenzalj s-sel osztassal

Varhato érték:
E[ Le™ ] =5 E[ L*/s ]+ (1-5) 0 = E[ L1 ]
Szoras no:
DE[ chﬂ* ] =g E[ (Ll‘cﬂ';'S")E ] i ( | -S.-) 0 EE[ Lreﬂ ]:
( 1/s - l) E[{'Lru‘:i]')l ] J DZ[ chll ]




Fényut epites
Nincs
kausztika

-

’ shadgw rays

Nincsenek
lathato tiikrok és torés

Path connecting the light sources to the eye can be built from two directions. We can start at the
eye and walk in the space opposite to the light generating the next direction with BRDF sampling
and then gathering the emission of the visited points. However, if the light sources are small, then
only a few walks have non zero contribution , which is responsible for large fluctuations of the
average pixel colors. In order to avoid this the walk is forced to go to the light source by
connecting the visited points to the light sources by deterministic shadow rays.

Paths can also be obtained starting at the light sources and walking as real photons do. At the
reflection points the continuation direction can be samples with BRDF sampling. Again, it is very
unlikely that the walks find the eye, thus we force the walk to go to the eye by connecting the
visited points by deterministic visibility rays.

Note that the first approach called gathering or path tracing uses BRDF sampling everywhere
except at the last reflection towards the light sources while the second approach called shooting or
light tracing uses BRDF sampling everywhere except for the last reflections towards the eye.

If the surfaces at these points are highly specular, or mirror like, then it is very unlikely that the
deterministic connection finds that direction that would be preferred by BRDF sampling, which
results in high contribution low probability samples that are regarded as bad samples.

Light sources directly illuminating mirrors or ideal refracting objects cause caustics, thus these
caustic effects cannot be efficiently rendered by path tracing. For example, this image was
obtained with path tracing with 800 samples per pixel. This is quite accurate except for points
where the illumination comes from a single reflection of the light source on a close to ideal
mirror.

For shooting, visible mirrors and glass objects pose problems, therefore these scenes cannot be
efficiently rendered by light tracing.



Path tracing

Jr -Lel -

e
L3

[ e

® BRDF mintavétel: Pr{kov irany} ~ Brdf cos 0°

® Oroszrulett: Befejezés 1- a. valdoszinuséggeel
~] ~] '




Path Tracer

Color Trace(ray, depth)
(object, x) = Intersect(ray)
[F no intersection THEN RETURN L,
color = Direct Lightsource(x, -ray.dir) .
if (depth == 0) color += Le (x, -ray.dir)

prob = RussianRoulette (normal, -ray.dir)
[F (prob == 0) RETURN color
prob *= BRDFSampling (newdir, normal, -ray.dir)
[F (prob == 0) RETURN color
color += Trace(Ray(x, newdir), depth+1) *
Brdf(newdir, normal, -ray.dir) cos®’ / prob
RETURN color




Light tracing

I( B dd
s (%,0) =71 cos6’do
®Source is selected with probability p€oc Lé(X,m,)cos0
®Pr{next direction} ~ BRDF cos0

®Termination with 1- g,

oP =| LccosO/pc | wy/

G (Dlt)lil]




Bi-directional path tracing

pixel

<¢:47 g'

@/M_ws'O_L('M
X—Yy

L=® /(dx cos O do)=

Such problematic cases can be solved by bi-directional strategies. Bi-directional
path tracing starts a gathering walk from the eye, and a shooting walk from the
light source, then connects all visited points of the gathering walk to all visited
points of the shooting walk deterministically, generating a complete family of
paths.

For those members of this family where the deterministic shadow ray connects
two not highly specular objects and the deterministic ray is long, the sample will
be good, otherwise the sample will be bad.

The task is them to keep that members of the family that are good and to get rid
of bad samples.




Multiple importance sampling

Let us consider a single path connecting the light source to the eye. Bi-directional
path tracing could generate this paths by many different ways. For example, it
can happen that the length of the light tracing part 4 and a deterministic
connecting takes the shooting path to the eye. Or the gathering path can be 1 ray
long, placing the deterministic connection between the one ray long gathering
path and the three ray long shooting path. Similarly the deterministic connection
can appear anywhere in the walk.

These versions correspond to the same sample thus the contributions of these
versions are equal. However, the sampling probabilities differ.

How do we know when a particular sample is generated, then it can be
considered as a good sample? Recall that what we are afraid of is a high
contribution low probability sample. Using this heuristics, we can say that the
best version is that one which has the highest sampling probability.

It means that when a bi-directional path is built, we have to compute the
generation probability for not only this particular version but for all other
versions that would place the deterministic step at different positions. If the
probability of the particular version is the maximum, that the sample is kept,
otherwise, the contribution of the sample is not computed. This strategy is called
maximum heuristics.




Foton terkep

Bi-directional path tracing connects a single gathering path to a single shooting
path to obtain complete light paths that are used in the integral quadrature.

If we could store shooting paths somehow, we could connect a single gathering
path to all shooting paths simultaneously, thus we could gain much more samples
for the integral quadrature. This is the basic idea of the photon map algorithm
proposed by Jensen, which uses an approximative representation of the result of
all shooting paths.

This algorithm consists of two phases. In the first phase a lot of shooting walks
are generated and the photon hits of these walks are stored in an appropriate data
structure. Then, in the second phase rays are traced from the eye and the radiance
of the visible points are approximated from the photon hits nearby this point.



Foton terkep gyujtes

Hit:
Position
Direction
Power
Normal vector

Gomb

n foton talalat




Direkt megjelenites







Virtualis fényforrasok

<

I= . i) cos 0, f(x) cos 6,

- V(x,y)
x — |

The photon map algorithm uses those photons that are close to a point of interest,
which limits the number of light paths obtained in a single step.

In instant radiosity, on the other hand, all photons are utilized when the
illumination of a point is computed.

This method also consists of two phases. In the first phase a relatively few
shooting paths are generated and the photon hits are stored.

Then in the second phase, these photons act as virtual light sources whose
illumination is responsible for indirect illumination.

The original version of this algorithm proposed by Keller, which is known as
instant radiosity, the surfaces were assumed to be diffuse, thus the virtual light
sources are also diffuse. The illumination of diffuse lights together with depth
buffer shadows could be computed by the graphics hardware even at that time,
which made this method really fast.



Virtualis fényforrasok
Kiterjesztes

Caustics lovesbol

[dealis tiikr6zo, tord
feliiletek: path tracing




Metropolis light transport

When it comes to the global illumination problem a sample is a light path
connecting the light source to the eye, thus mutating the sample means a
perturbation of this paths. Such perturbations should change all properties of the
path with positive probability, as for example, the directions, the origins and the
length as well.

Although, if this requirement is met, then the algorithm will converge to the
correct result no matter what kind of mutations are used, the applied perturbation
strategy significantly affects the speed of convergence.

For example, on specular surfaces it would be worth gradually refining the
perturbation size, which cannot be made by the original approach, and
consequently the original method is really efficient just on very difficult scenes.
Moreover, if the paths are mutated, then the mutations will not be symmetric,
which makes the formulae and the implementation more complicated.

Considering this, the efficient implementation of this seemingly brilliant and
simple idea is not at all trivial, and the method has not become as popular as
expected.



Klasszikus fontossag szerinti mintaveétel

. I ami kozeliti /-

Integrandus: & normalizélé_sa
. pdf=1/)1dx

szlas

elo
[¥ pdf dx

. Val6szintis¢ so
CDF(y) =

. Mintavétel:
Egyenletes eloszlas
transzformalasa

rin [0,1]:
x = CDF(r)

The process of constructing the sampling distribution and generating the samples
consists of the following steps:

First we find a scalar importance function that mimics the original, usually non-
scalar integrand.

The importance is normalized to obtain a probability density, which is integrated
to establish the cumulative probability distribution.

Finally the samples are generated from uniformly distributed pseudo or quasi
random numbers by transforming them with the inverse of the cumulative
distribution function.

Unfortunately, this process imposes severe requirements on the importance
function, namely, we should know and analytically integrate it, and its integral
should be invertible.

These requirements can only be met if the importance function is rather simple,
which makes it impossible to mimic the integrand properly.



Metropolis mintavételezes

1. / ami hasonlo f

1 d 2. Normalizalo konstans:
e s
egrandus: B J 7 dx

3. Mintavétel:
Mutacio/Elfogadas
Folyamat, amely x-et
[(x)/b valoszinlisegsuruséggel
mintavételezi

Metropolis sampling, on the other hand, when carries out importance sampling,
assumes much less about the importance function.

Instead of transforming uniformly distributed numbers, Metropolis sampling
randomly mutates the previous sample to obtain a new tentative sample, and
decides randomly on the acceptance or rejection of the perturbed sample.

If the acceptance of the tentative sample is proportional to the importance
degradation, then the probability of obtaining a sample in the stationary limiting
case will be proportional to the importance function, with almost all mutation
strategies.

Note that Metropolis sampling does not even need the analytic form of the
importance function, it is enough if we can point sample it, thus the importance
sampling strategy can be much more effective, resulting in accurate images with
just a few samples.



Elfogadasi valoszinlseég

® “Barmilyen” mutacio 7(x—y )

@ Elfogadasi valoszinliség a(x—y) gy, hogy a
hatareloszlas a fontossaggal aranyos legyen: p(x) o /(x)

a(x—y) [(y) T(y—x)

a(v—x)  I(x) I(x—y)

p(x) T(x—y) a(x—y)

]
.‘,

Detailed balance Maximalis konvergencia:

¢ 1) T(y—>x) qb

a(x—y) = miny
I(x)T(x—>y)




Metropolis algoritmus

FOR i=1TO M DO
Using z; choose another random, tentative point , 2
aiz;2z)=U(z) T(z,= z)) /(I (z;) T(z; = z,))

/I accept with probability a(z; = z,)
Generate random number 7 in [0,1]
IFr<a(z;= z) THEN z,,.;, =z, ELSE z;,, =z,
Use z;,; in the integral quadrature
ENDFOR




Mutaciok az elsédleges
mintaveételi terben

u,, Uy, Ug, Ug

U=(u,,...)

Fényutak Véletlen szamok

A sequence of pseudo random numbers unambigously defines the light path for a
given random walk algorithm. Let us suppose, for example, that the simplest
version of bi-directional path tracing is used. Here, with two random numbers the
pixel is sampled, then on the visible surface another random value is needed
whether or not the walk should be terminated according to Russian roulette. If
not, two new random values determine the direction of the reflection direction
and the next one is responsible for the termination.

If the eyepath is terminated, four new random values are taken to find a light
source point and direction that initiate a shooting path. Having terminated the
shooting path, the eye and shooting subpaths are connected, and thus a complete
path is established, which is defined by sixteen pseudo random numbers or a
point in a sixteen dimensional unit cube.



Mutaciok az elsédleges
mintaveételi terben

)/7.4]0/' .

U=(u,,...)

Path space Primary sample space

Mutating in the primary sample space means that we change the point in the unit
cube, and regenerate the path with the given random walk approach. Note that
this can handle all types of path mutations. For example, if the mutation is
smaller than allowed by the albedo limits used in Russian roulette, then the
structure of the path is not altered, only the directions and the lightsource point
are modified. However, when the mutation exceeds the albedo limits, steps are
deleted or new steps might be introduced.



Mutaciok az elsédleges
mintaveételi terben

primary sample
space of random
numbers

random
number
oeneratio

path
generation

In order to attack these problems, we proposed the perturbations to be realized in
the so called primary sample space from where normal random walks obtain the
uniformly distributed random numbers. Since normal importance sampling
transforms these points in a way that a given mutation will correspond to a small
path change for high contribution paths and a larger change for low contribution
paths, this strategy adapts to the general properties of the scene and will be
efficient not only for difficult but also for moderately difficult lighting conditions.

Moreover, this is very simple to implement if we already have an arbitrary
random walk implementations, such as path tracing or bi-directional path tracing.
The main module of a random walk algorithm is responsible for path generation.
It calls the random number generator to get uniformly distributed random
numbers and adds the contribution of the paths to the affected pixel.

In order to implement our Metropolis Sampler, the random number generation
should be slightly changed. The new generator will perturb the previous numbers
instead of obtaining a completely new one. On the other hand, the contribution
should be computed differently, since we have to remember the previous sample,
decide on the acceptance randomly, and restore the original sample if the new
sample is rejected. This restoration also affects the random number generator.
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