




In computer graphics we render virtual worlds by taking a photo of them and 

presenting their image to the user. The virtual world is stored in the computer 

memory. The virtual world model can be the result of an interactive modeling 

process, simulation, measurement, etc.

Rendering can be regarded as an abstract mapping from the virtual world 

model to the intensity and color values of the computer screen. There are 

infinite number of possibilities to define this mapping. If we wish to have 

images that look like real images, we should simulate the image creation 

process or the real world. For example, we can simulate light transport, i.e. 

optics, or manual drawing. 



Let us look at the details when the virtual world is two dimensional, so objects 

are in a plane. A convenient reference system is a Cartesian coordinate system 

with an origin, two axes and also a unit. Using these every point of the plane 

can be specified by two numbers defining the distance traveled along the two 

axes and measured with respect to the unit. 

With pairs of numbers, points can be defined, which can form primitives by 

adding topology information. For example, we can say that these three points

define a triangle. Primitives are given material properties, which usually 

include the color.



If we want to create photo like images, we should simulate the light transport 

and provide the user with the illusion that he watches the real world and not a 

computer screen. 

If we could guarantee that the human eye gets the same photons (i.e. the same 

number and of the same frequency) from the solid angle subtended by a pixel 

as the eye got from the real world, then it would not be possible for the user to 

distinguish between the computer monitor and the real world since the same 

photons result in similar color impressions. So in computer graphics, we 

should compute the number and frequency of photons, i.e. the power spectrum 

of the light that would enter the eye from the solid angle of each pixel. Then 

the display should be controlled to emit similar photons. Fortunately, we do 

not have to emit exactly the same spectrum since the human eye is very bad in 

measuring a spectrum. In fact, the illusion of most of the spectra can be 

provided by carefully selected red, green and blue intensities. So having 

calculated the spectrum, we convert it to an equivalent red/green/blue 

intensity triplet and get the monitor to emit it. 

The calculation of the light spectrum requires the solution of the photon 

transfer or the transfer of electromagnetic waves. The equations describing 

these phenomena are the Maxwell equations, so in fact, graphics should solve 



these fundamental equations to obtain the image.



The results of the simulation of optics laws or Maxwell equations are indeed 

like real photos. 



The simulation of optics is useful even if the original data is not directly 

related to optical parameters. However, we can establish a correspondence 

between non-optical properties, like density or the extinction of X-ray etc, and 

hypothetical optical properties like opacity, transparency, color etc. Having 

established this relationship, we can photograph the scene and present the 

image which visualizes the data for us.



However, in computer graphics it is not obligatory to use only the optics 

model. Instead, we can simulate the artistic process, like drawing, painting, 

hatching etc. We can also take other analogies. For example, the lower left 

image is a flow visualization obtained with the line integral convolution 

algorithm. This algorithm simulates the process of putting confetti into the 

flow and photographing it keeping the shutter open for a longer time. The 

confetties are blurred into the direction of the velocity field of the flow.

Such analogies are essential when there is no direct method for visualizing the 

data, for example, when it is higher than three dimensional. The right upper 

image is made with the parallel coordinates method, which displays a seven-

dimensional data set. Each dimension is given a vertical line and a point is 

then a polyline connecting its coordinates on each vertical line. 













Computer graphics works with shapes. The field of mathematics that describes 
shapes is the geometry, so geometry is essential in computer graphics.

Geometry, like other fields of formal science, has axioms that are based on 
experience and cannot be argued but are accepted as true statements without 
arguments. From axioms other true statements, called theorems, can be deducted 
with logic reasoning. 

For example, axioms of the Euclidean geometry include the following three 
postulates. Axioms have two purposes, on the one hand, they are accepted as true 
statements. On the other hand, axioms implicitly define basic concepts like 
points, lines etc. because they postulate their properties. 

Based on the axioms and the applied tools, there are several different geometries 
that are different models of the world. Everybody knows the Euclidean geometry 
of the plane and of the space. We know that it is metric, i.e. we can talk of the 
distance between objects and size is an important concept in it. In Euclidean 
geometry parallel lines do not intersect, that is, a point at infinity is not part of the 
Euclidean plane.

However, if we define axioms differently, we can add points at infinity to the 
plane making all lines, even parallel lines, intersecting. Clearly, this is a different 
geometry with different axioms and theorems, which is called the projective 
geometry. Projective geometry is not metric since distance cannot be defined in 



it. The reason is that the distance from points at infinity is infinite, but infinite is not a 

number. 

In Euclidean geometry size is an important issue, curves are measured by their length, 

surfaces by their area, and solids by their volume. However, when we try to apply these 

concepts to natural phenomena, like a snow crystal or a cloud, we fail. We have to realize 

that natural objects do not have a precise size, so Euclidean geometry is not appropriate 

for their description. For natural phenomena, we use fractal geometry. 



In computer graphics, we should also take into account that a computer is 

programmed, which cannot do anything else but calculations with numbers. A 

computer is definitely not able to understand abstract concepts like point, line etc. 

So for the application of a computer, geometric concepts must be translated to 

numbers, calculation and algebra. 

A geometry based on algebra, equations and numbers is called analytic geometry 

or coordinate geometry. To establish an analytic version of a geometry, we have 

to find correspondences between geometric concepts and concepts of algebra in a 

way that axioms of the geometry will not contradict to the concepts of algebra. If 

it is done, we can forget the original axioms and work only with numbers and 

equations.



The goal is the definition of points with numbers and primitives with equations or

functions. 

The definition of points with numbers requires a coordinate system and then the 

measuring of the point with respect to this coordinate system. A Cartesian 

coordinate system contains two orthogonal lines or axes, and a unit on them, and 

we measure how far we should walk along them to arrive at the identified point. 

A 2D polar coordinate system is a half line, and a point is defined by an angle and 

a distance. The angle specifies the direction in which we should go from the 

origin and the distance is interpreted between the origin and the identified point. 

Note that while we require that all points can be expressed by coordinates, this is 

not necessarily unambiguous, i.e. in a polar system the origin can be defined with 

arbitrary angle and with distance zero. 

In computer graphics barycentric coordinate systems are also popular. Here, the 

coordinate system is a set of points (at least 3 in 2D) where we put weights. The 

resulting mechanical system has a center of mass somewhere, which are 

identified by the numbers of the weights.  Barycentric coordinates are often 

called homogeneous, due to the property that if we multiply all weights with the 

same non-zero scalar, then the center of mass is not affected.



However, for such constructions we have already applied many non-trivial concepts like 

vectors, distance, angles. First, let us start from scratch and revisit these basic building 

blocks.



Defining a point as the center of mass of a system where masses placed at finite 

number of reference points is also called the combination of these points with 

barycentric coordinates equal to the weights. 

Note that we can do this in real life without mathematics and coordinate systems, 

center mass exists and is real without mathematics and abstraction.

If all weights are non-negative, which has direct physical meaning, then we talk 

of convex combination since the points that can be defined in this way are in the 

convex hull of the reference points. By definition, the convex hull is the minimal 

set of points that is convex and includes the original reference points. For 

example, when presents are wrapped, the wrapping paper is on the convex hull of 

the presents.

Using the term combination or convex combination, we can define a line as a

combination of two points and a line segment as a convex combination of two 

points. Similarly, the convex combination of three not collinear points is the 

triangle, the convex combination of four points not being in the same plane is a 

tetrahedron.



In addition to combining points, we can also translate them. By definition a 

translation is a vector, which has direction and length. The length is denoted by 

the absolute value of the vector.

If we select a special reference point, called the origin, then every point has a 

unique vector that translates the origin to here, or from the other point of view, 

every vector unambiguously defines a point that is reached if the origin is 

translated by this vector. Such vectors are called position vectors. The fact that 

there is a one-to-one correspondence between points and position vectors does 

not mean that points and vectors would be identical objects (wife and husband are 

also strongly related and unambiguously identify each other, but are still different 

objects with specific operations).

Concerning vector operations, we can talk of addition that means the execution 

of the two translations one after the other. The resulting translation is independent 

of the order, so vector addition is commutative (parallelogram rule). If we have 

more than two vectors, parentheses can rearranged so it is also associative.

Vector addition has an inverse, because we can ask which vector completes the 

translation of v2 to get a resulting translation v.

Vectors can be multiplied by a scalar, which scales the length but does not 



modify the direction. Scaling is distributive, i.e. scaling a sum of two vectors results in 

the same vector as adding up the two scaled versions.

We have to emphasize that the nice properties of commutativity, associativity, and 

distributivity are usually not evident and sometimes not even true for vector operations. 

Be careful!



Vectors can be multiplied in different ways. The first possibility is the scalar 

product (aka dot or inner product) that assigns a scalar to two vectors. By 

definition, the resulting scalar is equal to the product of the lengths of the two 

vectors and the cosine of the angle between them.

The geometric meaning of scalar product is the length of projection of one vector 

onto the other, multiplied by the lengths of the others.

Scalar product is commutative (symmetric), which is obvious from the 

definition.

Scalar product is distributive with the vector addition, which can be proven by 

looking at the geometric interpretation. Projection is obviously distributive (the 

projection of the sum of two vectors is the same as the sum of the two 

projections.

Scalar product is NOT associative!

There is a direct relationship between dot product and the absolute value. The 

scalar product of a vector with itself is equal to the square of its length according 

to the definition since cos(0)=1.



Vectors can be multiplied with the rules of the vector (aka cross) product as 

well. The result is a vector of length equal to the product of the lengths of the two 

vectors and the sine of their angle. The resulting vector is perpendicular to both 

operands and points into the direction of the middle finger of our right hand if our 

thumb points into the direction of the first operand and our index finger into the 

direction of the second operand (right hand rule).

Cross product can be given two different geometric interpretations. The first is a 

vector meeting the requirements of the right hand rule and of length equal to the 

area of the parallelogram of edge vectors of the two operands.

The second geometric interpretation is the projection of the second vector onto 

the plane perpendicular to the first vector, rotating the projection by 90 degrees 

around the first vector, and finally scaling the result with the length of the first 

vector.

Cross product is NOT commutative but anti-symmetric or alternating, which 

means that exchanging the two operands the result is multiplied by -1.

Cross product is distributive with the addition, which can be proven by 

considering its second geometric interpretation. Projection onto a plane is 



distributive with addition, so are rotation and scaling. Cross product is NOT associative.



Having vectors and operations, we are ready to establish a Cartesian coordinate 

system. Let us select one point of the plane and two unit (length) vectors i and j

that are perpendicular to each other. A vector has unit length if its scalar product 

with itself is 1 and two vectors are perpendicular if their scalar product is zero 

since cos(90)=0 (formally:i i =j j =1 and i j= 0).

Now, any position vector v can be unambiguously given as a linear combination 

of basis vector i and j, i.e. in the form v = xi + yj, where x and y are scalars, called 

the coordinates. Having v, scalar products determine the appropriate 

coordinates: x = vi, y = vj . To prove this, let us multiply both sides of v = xi + 

yj by i and j.

As there is a one-to-one correspondence between vectors and coordinate pairs in 

2D (and coordinate triplets in 3D), vectors can be represented by coordinates in 

all operations. 

Based on the associative property of vector addition and on distributive property 

of multiplying a vector by a scalar with addition, we can prove that coordinates of 

the sum of two vectors are the sums of the respective coordinates of the two 

vectors. 



Similarly, based on the distributive property of dot product with vector addition, we can 

prove that the dot product equals to the sum of the products of respective coordinates. 

Here we also exploit that i i =jj=1 and i j= 0.

Finally, based on the distributive property of the cross product with vector addition, we 

can also express the cross product of two vector with their coordinates. We should also use 

the cross products of the base vectors i i =0, i j=k, etc. The result can be memorized as 

a determinant where the first row contains the three basis vectors, the second the 

coordinates of the first operand, the third the coordinates of the second operand.

The absolute value of a vector is the square root of the scalar product of the vector with 

itself. Note that we get the Pythagoras theorem for free.



The implementation of the theory discussed so far is a single C++ class 

representing a 3D point or a vector with three Cartesian coordinates. Using 

operator overloading, the discussed vector (and point) operations are also.



Having points, we can start defining primitives built of infinitely many points. 

We have two basic operations on points, combination and finding the vector that 

translates one point to the other. 

If we have a translation vector, we can ask the distance, impose requirements on 

orthogonality or parallelism.

Combination uses the center of mass analogy, which assigns the center of mass to 

a set of points by the given formula. The position vectors of individual points are 

multiplied by the mass placed there and the sum is divided by the total mass. 

Let us select two points that will be combined and, for the sake of simplicity, let 

us assume that the total mass is 1 (we distribute 1 kg mass in the two points). 

Distributing unit mass has the advantage that we do not have to divide with the 

total mass since division by 1 can be saved.

The center of mass will be on a line segment between by the two points. Whether 

it is closer to the first or to the second point depends on t, so by modifying t in 

[0,1] we can make the center of mass run on the line segment. So, points of the 

line segment can be expressed by a function of t. Such equation is called 

parametric equation because we have a free parameter that controls which point 



of the primitive is currently selected. 

If t can be outside of the unit interval, then a point can also repel the point, thus the center 

of mass will still be on the line of the two points but outside of the line segment. The 

equation of the line segment and the line are similar, only the parameter ranges are 

different. The equation can also be rewritten in another form, where the two points are 

replaced by one point, called the position vector of the line, and the vector between them, 

called the direction vector of the line. 



Having points, we can start defining primitives built of infinitely many points. 

We have two basic operations on points, combination and finding the vector 

that translates one point to the other. If we have a translation vector, we can 

ask the distance, impose requirements on orthogonality or parallelism.

Combination uses the center of mass analogy, which assigns the center of mass to 

a set of points by the given formula. The position vectors of individual points are 

multiplied by the mass placed there and the sum is divided by the total mass. 

Let us select two points that will be combined and, for the sake of simplicity, let 

us assume that the total mass is 1 (we distribute 1 kg mass in the two points). 

Distributing unit mass has the advantage that we do not have to divide with the 

total mass since division by 1 can be saved.

The other way of establishing the equation of the line is based on orthogonality 

(or, from another point of view, on distance). The difference vectors of any two 

points on the line are all parallel, so they are all perpendicular to a given vector, 

called the normal vector of the line. Let one point be a given point, called the 

position vector of the line, and the other point represent any point (this is called 



the running point). Their difference r-r0 is perpendicular to normal vector n if and only if 

their scalar product is zero. This equation imposes a requirement on running point r. If r 

satisfies this equation, then the point is on the line, otherwise it is not on the line.

Another interpretation uses the distance. Point r is on the line if its distance from the line 

is zero. We know from geometry that the distance should be measured in perpendicular 

direction, which is

|n(r – r0)| if n is a unit vector (the difference is projected onto the unit normal vector).

Expressing the line equation with coordinates, we get an implicit linear equation for 

unknown point coordinates x and y. If a point’s x,y coordinates satisfy this equation, the 

point is on the line. 

This implicit equation can also be expressed by the scalar product of two three-element 

vectors if we use the convention that 2D points have three coordinates where the third 

coordinate is 1.





By definition, a circle is a set of points r of distance R (radius) from its center 

point  c. Translating this geometric definition to the language of analytic 

geometry, we can establish the equation of the circle. 

Distance of two points is the absolute value of the vector between them, which 

must be equal to R. Instead of the distance, we can work with the squared 

distance since both sides of this equation are positive, so taking the square does 

not modify the roots. The squared distance is the dot product of the difference 

vector with itself. Dot product can also be expressed with coordinates, so we can 

establish an implicit equation of the circle in Cartesian coordinates.

Circle has also a famous parametric equation, which is based on the definition of 

cos and sin: If we rotate a unit vector by  around axis z, the x coordinate of the 

rotated vector is cos() and the y coordinate is sin().

Rotated vector of length R can be obtained by scaling by R. If the center is not in 

the origin but at point c, then we should translate the circle points by c. 







If we want to specify 1D objects, like curves, then we should simultaneously 

identify (uncountably) infinitely many points. Obviously, defining the points 

one by one with their Cartesian coordinates is not an option. Instead, we 

usually specify an equation that has infinitely many roots and these roots are 

considered as the Cartesian coordinates of points in a set defined by the 

equation. Assume that we are in 2D when the equation should contain 

Cartesian coordinates x and y (in 3D there would be a third coordinate as 

well). The equation can have implicit form, which means that x and y are 

put into an algebraic expression that is made equal to zero. We have a single 

equation with two unknowns thus, we have the hope of having infinitely 

many roots, i.e. x,y pairs. 

For example, a linear equation containing x and y identifies a line. A circle 

contains points that are at distance R from the reference point. Expressing 

this distance with the Pythagoras theorem, we can also develop and equation 

for the circle. 

The equation may also have parametric form, where we use a free 

parameter t that can run in an appropriate interval. Substituting t into two 

equations defining x and y (or z), we get the Cartesian coordinates of the 

point corresponding to t.

The most obvious, but the least useful equation type is the explicit form, 

where we express y as a function of x. The problem with this representation 



is for each x there must be exactly one y. This is usually not the case, think of a 

circle or a vertical line, for example.

For classic curves, like line, circle, parabola, ellipse, etc. we know their geometric 

definition, which can be translated to an equation, so the definition means the 

specification of the free parameters in the equation.



However, curves we meet usually do not belong to the category of classic 

curves, so we do not know their equation. These curves are free form 

curves.

As ”everything” can be approximated by polynomials, the unknown 

equations of free form curves are also attacked this way. We approximate 

their parametric equations with polynomials of parameter t. The problem is 

that the polynomial coefficients do not have intuitive interpretation, thus we 

cannot expect the modeler to specify the coefficients directly. Instead, we 

require the user to specify a finite number of control points, and the 

modeling program automatically computes the polynomial coefficients from 

the control points.  This  computation can be an interpolation when the 

resulting curve is expected to go through the control points. Or, the 

computation can also be an approximation, when the resulting curve should 

just somehow follow the control points, but it does not have to go through 

each of them. By requiring approximation instead of interpolation, we ease 

the fitting process so we can impose additional requirements concerning the

”quality” of the curve. 



The first curve is of interpolation type and is known as the Lagrange interpolation. 

Suppose we specify a sequence of control points r1, …, rn, and search a parametric 

function r(t) (one polynomial for each of the x, y or x, y, z coordinates) that goes through 

them. More precisely, we expect the curve to give control point r1 for parameter value t1, 

r2 for t2, etc. The interpolation requirement means n constraints, thus the polynomials may 

have n unknown coefficients to make the number of unknowns equal to the number of 

equations, and thus obtaining a well defined problem with an unambiguous solution. To 

find the n unknown polynomial coefficients, we need to solve a linear equation generated 

by substituting t1,…,tn into the polynomial and requiring them to be equal to r1,…,rn, 

respectively. If we solve it, we obtain the coefficients, which allow the computation of the 

curve point for arbitrary parameter t. 

Instead of solving the linear equation, the solution can be given directly as a combination of 

the control points with barycentric coordinates Li(t) that depend on parameter t. The 

algebraic form of these weight functions, aka basis functions or blending functions is 

shown here as the ratio of two products. 

To prove that the combination of the control points with these functions satisfies the 

interpolation constraints, let us examine a basis function Li when we substitute tk into it. If 

i=k, the numerator and the denominator of Li will be similar, so Li(ti) = 1. However, when 

i !=k, there will be some j which equals to k, so one factor of the numerator will be tk-tk=0, 

making Li(tk) also zero. So Li is 1 for ti but is zero for all other discrete parameter values. 

This means that in sum Li(tk) ri, all control points ri get zero weight except rk, which gets 

weight 1, thus r(tk) = rk. 

Note: A point of the Lagrange curve is the combination of control points with weights Li.

According to the definition of combination, the reference points (which are the control 

points here) should be multiplied with the corresponding weights, the terms should be 



added them up, and finally the sum be divided with the total mass. Where is this division? The 

division can be ignored if the total mass is 1. Is the sum of the weight functions equal to 1 for any 

t??? (Yes).





Let us take an example where there are four control points and we expect 

the curve to interpolate them for t=0, 0.33, 0.67, and 1, respectively. The 

basis functions are depicted in the Figure. When t=0, the weight of the green 

point is 1, and the weight of all other points is zero. The curve is then in the 

green point. When t increases, the weight of the red point gets larger and at 

t=0.33 only the red point has non-zero weight…

The basis functions oscillate between positive and negative values, thus a 

control point periodically attracts or repels the curve. This is bad since the 

curve will tend to oscillate. 

The other disadvantage of Lagrange interpolation is that it cannot provide 

local control. Local control would mean that the modification of a control 

point modifies only a smaller part of the curve. However, as all basis 

functions are non-zero in the whole domain, the complete curve will change.





Hermite (H at the beginning and e at the end are silent because he was a 

Frenchman) interpolation is a generalization of Lagrange interpolation, 

where not only the points to be interpolated are given but also the 

derivatives. Here we discuss only the practically relevant special case, when 

the curve is defined by two control points and the first derivatives at these 

control points. We have four constraints, so the polynomial that is 

unambiguously determined by these constraints if a cubic (of four 

polynomical coefficients). 

The strategy is (always) similar to that of the Lagrange interpolation. We 

take the polynomial with yet unknown coefficients, substitute the 

constraints, and get a linear equation for the unknown coefficients. This 

linear equation is solved. 



Lagrange (and Hermite) interpolation tends to oscillate. Let us find a better 

curve. We still use the center of mass analogy, i.e. the curve will be the 

composition of control points with weights placed at them. The weights are 

basis functions Bi(t) and we can ignore division with the total mass if the 

sum of weights is guaranteed to be equal to 1. 

We do not want the oscillation of the Lagrange curve, so we allow only non-

negative weights. Composition with non-negative weights is a convex 

combination, thus all points of the curve, i.e. the complete curve will be in 

the convex hull of the control points.



So, the task is to find a basis function system where each basis function is 

non-negative in the allowed domain (in [0,1]) and their sum is everywhere 

1.

Such basis functions can be constructed by expressing 1 with the Newtonian 

binomial theorem. The terms are called Bernstein polynomials, which are 

indeed non-negative if t is in [0,1], and their creation guarantees that their 

sum is 1.



If n = 3 (which is good for 4 control points), the basis functions are (1-t)^3, 

3*(1-t)^2*t, 3*(1-t) *t^2, t^3. Note that the first basis function is 1 for t=0, 

while all others are zero, so the curve crosses the fist control points. 

Similarly, when t=1, the curve is at the last control point. However, other 

control points are not so lucky, they are usually not interpolated. This is an 

approximation curve.





Let us define a separate curve segments between every two control points 

applying Hermite interpolation. Hermite interpolation needs the start and 

end points (which are available) and the derivatives at these two points 

(which should be found somehow).

If the speed is uniform and the motion is linear in segment i, then its 

constant speed equals to (r{i}-r{i-1})/(t{i}-t{i-1}).

Similarly the constant speed in segment i+1 would be (r{i+1}-r{i})/(t{i+1}-

t{i}). A good approximation is to set the velocity at the control point shared 

by the two segments to the average of these two velocities. This is the 

Catmull-Rom spline.

Kochanek and Bartels further generalized this spline and allowed an 

additional tension parameter that can scale up or down the average velocity. 

On the other hand, we can use a weighted average when the average of the 

two constant speeds is obtained.





The Catmull-Rom spline can be found in PowerPoint and in many drawing 

packages. It is an interpolating spline with local control.

When we move a control point, the average speeds of two linear uniform 

motions are modified. Thus, the averages of these linear motions  are 

changed at three control points, which can affect four curve segments at 

most.



Surfaces are two dimensional subsets of the 3D space. Their definition is 

very similar to that of curves, but now the parametric equations have two 

free parameters (parametric equations of curves map a line segment onto the 

curve, parametric equations of surfaces map a square onto the surface).





The definition of curves traced back the problem to the specification of a 

few control points. We use the same approach here.

First, we trace back the definition of surfaces to curves. Let us fix one of the 

free variables of the surface, which results in a one-variable parametric 

form, a curve. This curve is on the surface and is called isoparametric 

curve. A curve can be well defined by control points. Now let us fix the 

isoparametric value differently, which leads to another isoparametric curve 

that can be defined with different control points. As the isoparametric value 

changes, the control points of the corresponding isoparametric curve also 

change. These changes are also curves, so we can express the path of the 

control point by blending other control points.

Substituting this into the equation of the isoparametric curve, we obtain the 

equation of the surface, which is a combination of control points forming a 

control cage or control polyhedron. The blending or weighting function of 

control point rij is the product of basis functions Bi parameterized with u, 

and Bj parameterized with v. 



Surface definition is basically the modification of control points that attract 

the surface if weights are non-negative.



So far we used the following strategy. We started with the control cage or 

control mesh. Using the center of mass analogy, a continuous and smooth 

parametric surface is developed. However, when we render this smooth 

surface, we should decompose it to small triangles since the GPU can 

handle only triangles and not smooth surfaces. So the very beginning of this 

process is a rough mesh and the very end is a fine mesh.

Can we get rid of the complicated mathematics of blending, splines, smooth 

interpolation etc. and obtain the fine mesh directly from the rough mesh? 



Subdivision curves or surfaces are based exactly on this idea.

Let us consider a curve defined by a few control points. The polyline 

connecting the control points is a rough approximation of the desired 

smooth curve. This rough polyline is refined by subdividing it by inserting a 

point at the middle of each line segment and then moving the original 

vertices to the weighted average of their original location and the two 

middle points. 

The new polyline looks smoother. If we are not satisfied, we can repeat the 

process recursively. 



The idea can be extended to surfaces. Here only one type of subdivision 

surfaces is introduced, which is called the Catmull-Clark surface. We 

assume that the original mesh is built of quadrilaterals. Although the 

algorithm can work with other meshes as well, after the first subdivision 

step, the mesh will always be a quadrilateral mesh.

The subdivision starts by the computation of face center and edge center 

points, which double the resolution but do not alter the shape yet. Then we 

first move the original vertices to the weighted average of the surrounding 

face centers, edge centers and of the point itself. The averaging scheme also 

depends on how many faces share this point, which is called the valence of 

this vertex.  Having moved the original vertices, we find the final location of 

the edge centers as well.









Boundary representation defines a solid by the boundary surfaces or faces. 

Specifying the boundaries independently would not work since it would be 

possible to create something where the boundaries do not enclose a 3D solid 

or the enclosing is not watertight. We should specify edges, faces and 

vertices simultaneously to always guarantee that the object is topologically 

valid.

A famous equation that can be used to check topological validity is the 

Euler theorem. It can be applied for 3D objects that are isomorphic to a 

sphere (they turn to a sphere when pumped up). Objects with holes or 

consisting of multiple independent pieces do not belong this category (they 

are isomorphic to a torus or more than one sphere). The Euler equation can 

be generalized to cover these cases as well, when it is called Euler-

Poincare equation.

With the Euler’s theorem, when we have an object, counting the vertices, 

faces and edges allows the determination whether or not this object is valid. 

However, when it turns out that it is invalid, it is usually too late. What we 

need is elementary operations that keep the validity of the Euler equation 

provided it was valid before the application of the operation. Such 

elementary operations are called Euler operations.



A few examples of Euler operators are shown here. Face extrude extrudes a 

face by automatically filling the holes between the original and extruded 

face with new faces and edges. Counting the numbers of new faces (4), 

edges (8) and vertices (8), we can prove that it is indeed an Euler operator.

Face split requires the user to select two edges of a fact and to specify two 

points on them. These new points are connected by a new edge.

Altogether, this operation introduces 2 vertices, 3 edges (one new and two 

that are obtained as the subdivision of the original edges with the new 

points) and a new face (the new edge subdivides the face into two).

Edge collapse removes an edge with one of its end points. Vertex split is the 

inverse of this operation.



To create a space ship, we can start with a topologically valid object, e.g. a 

transformed cube, then we execute a sequence of face extrusions. As face 

extrude is an Euler operator, the result will automatically be a topologically 

valid object.















Geometric transformations assign a point to a point, so it is a point valued

function of points.

Geometric transformation may destroy the equation and the type of an object. 

Even simple scaling turns a sphere into an ellipsoid, so the equation, program, 

representation will change. To avoid this, we limit the allowed transformations 

and object types to those which guarantee that the object type is preserved. Linear 

elements, like points, line segments, and polygons may approximate any 0,1 or 2 

dimensional object. 

Affine transformations that can be expressed as linear functions of the Cartesian 

coordinates map lines to lines and also preserve parallel lines.

This theorem can be proved by realizing that a line can have a linear equation and 

with linear equation only lines can be described. So, if a linear equation of a line 

is combined with the linear function of the transformation, we get a linear

equation, which thus must be a line. If this transformation could make parallel 

lines intersection or intersedted lines parallel, then this transformation would

create a point out of nothing or would make a point disappear. A linear function is 

not able to do that.



Affine transformations are not the widest set of transformations preserving lines and 

polygons. The widest set is homogeneous linear transformations (homogeneous 

coordinates are multiplied by a matrix), which includes central projection as well. 

To find this wider set of transformations, we should understand that no transformation of 

the Euclidean plane can make two parallel lines intersecting, since that would create a 

point from nothing. The problem is the Euclidean geometry itself and its property that

parallel lines do not intersect. To consistently discuss how lines can be transformed to

lines without keeping the parallelism, we should step out of the Euclidean geometry. The 

proper geometry is the projective geometry.



We can see the transformations of parallel lines to intersecting ones in every

moment of our life. The phenomenon is called perspective.



Perspective of the table.



To establish projective geometry, the axioms need to change. The parallel axiom

of the Euclidean geometry is deleted, and instead of this we postulate that „two

lines intersect each other in exactly one point”. As a result, the Euclidean plane

must be extended with ideal points. Each line is given one ideal point, assigning

the same ideal point to two lines if and only if they are parallel. Ideal points will

be on a line. 



Homogeneous coordinates are defined by extending the Cartesian coordinates by 

an additional coordinate that is equal to 1, and multiplying all coordinates by an 

arbitrary non-zero scalar h. An intuitive interpretation of homogeneous 

coordinates in 2D is the following: we put weight Xh in point (1,0), weight Yh in 

point (0,1), and w=h-Xh-Yh in the origin. Value h is the total mass distributed. 

Three numbers Xh,Yh,h identify a point in 2D which is the center of mass of this 

mechanical coordinate system. 

Based on the constuction, it is obvious that any point of the Euclidean space, 

which can be given by Cartesian coordinates, can also be represented by

homogeneous coordinates with non zero h. It is also true that any homogeneous

coordinate triple where h is not zero, can also be given by Cartesian coordinates, 

which can be obtained by dividing the first two coordinates by the third.

So, if h is not zero, homogeneous coordinates can represent the same set of points

as Cartesian coordinates.



Homogeneous coordinates [Xh, Yh, h] can also be interpreted in the following 

way: (Xh, Yh) specify the direction of the point, and h is a scaling of the distance.

Let us consider a point of Cartesian coordinates x,y, which can be given in 

homogeneous coordinates as [x,y,1].

Now, let us consider another point that is in the same direction, but twice as far as 

(x,y). This farther point is (2x,2y) in Cartesian coordinates, [2x,2y,1] in 

homogeneous coordinates, or [x,y,1/2] in homogeneous coordinates. Similarly, 

the point that is also in the same direction but is f times farther away is  [x,y,1/f]. 

So the interpretation of a homogeneous triplet is that the first two coordinates are 

Cartesian ones and show the direction, and the third coordinate is an inverse 

scaling of the distance. When f is infinity, so 1/f is zero, then we get [x,y,0], 

which is at the direction of  (x,y), but at infinity.

With homogeneous coordinates we can express ideal points, i.e. points at infinity 

that are the intersections of parallel lines. Note that in Euclidean geometry 

parallel lines do not intersect. So, when we work with homogeneous coordinates 

instead of Cartesian ones, we describe the projective plane that contains the ideal 

points as well, and not the Euclidean plane. 



3D points can also be represented with homogeneous coordinates, i.e. the 3D 

Cartesian space can also be extended to 3D projective space. The center of mass 

analogy puts weight Xh at reference point (1, 0, 0), weight Yh at (0,1,0), weight 

Zh at (0,0,1), and finally w = h–Xh-Yh-Zh at the origin. Using the definition of 

the center of mass, from a quadtuple of homogeneous coordinates, the 

corresponding Cartesian coordinate triplet can be obtained by homogeneous 

division (of course, only if h is not zero). 



We shall transform not only points but lines and planes as well, so we need the 

equations of lines and planes in homogeneous coordinates. We use the center of 

mass analogy. A point is specified by placing X1,Y1,Z1,h1-X1-Y1-Z1 weights at 

the ends of the basis vectors and the origin respectively, and another point is 

specified with X2,… weights. Both mechanical systems can be replaced by 

equivalent systems storing all weights in the center of mass. So when the two 

systems are combined, the final center of mass will be along a line between the 

two centers of masses. If we increase the weights of the first mechanical system 

proportionally scaling all weights, the location of the center of mass of the first 

system does not change, but it has larger total mass. So the center of mass of the 

combined system moves towards the first system along the line of the two centers 

of masses.

Thus, using this combination, we can obtain points on the line defined by the two 

centers of masses. If scaling is not negative, then we obtain the convex 

combination of the two points, which is a line segment. With allowing negative 

scaling, the total line can be specified.



In Euclidean geometry, using Cartesian coordinates, the plane is a linear equation 

of the coordinates. To find the plane in projective space, the points at infinity are 

added to this plane. First, Cartesian coordinates are replaced by homogeneous 

ones, assuming that h is not zero (it is forbidden to divide by zero). Then, both 

sides are multiplied with h. In this new equation we do not divide by h, so we can 

ignore the ”h is not zero” requirement. This corresponds to adding ideal points to 

the plane.

The projective plane is thus a homogeneous linear equation of homogeneous 

coordinates. We can also express it as a dot product of two 4D vectors, one 

describes the point, the other the parameters of the plane.



Homogeneous linear transformations are the multiplications of the vector of 

homogeneous coordinates by a matrix. The vector can be a row vector when it is 

on the left side of the matrix. On the other hand, the vector can also be a column 

vector, and stands on the right side. The two approaches are similar, just the 

matrix should be transposed accordingly. We shall prefer the case when the vector 

is a row vector, because it is more intuitive when multiple transformations are 

executed on after the other. 

A 2D point is described by 3 homogeneous coordinates, thus the transformation 

matrix is of 3x3 size.

For 3D points, the matrix has 4x4 elements.

In practice we execute not only a single transformation, but a sequence of 

transformations. This can be imagined as transforming the point with T1, then the

result by T2, etc. However, as matrix multiplication is associative, i.e. 

parentheses can be regrouped, we obtain the same result if we multiply the point

with the product of concatenation of the transformation matrices. Any sequence

of transformations can be expressed as a single matrix multiplication. If we

consider points as row vectors, then the order of transformation matrices will

correspond to the order of their execution. 



If the last column of the matrix is 0,0,1 in 2D and 0,0,0,1 in 3D, then the 

transformation is affine, i.e. it maps lines to lines and preserves parallel lines. 

From another point of view, the new Cartesian coordinates are linear functions of 

the original Cartesian coordinates.

Such tranfromation matrices do not modify the last homogeneous coordinate h.



In case of affine transformations, the third column is [0, 0, 1] and the row vectors

of the remaining part of the matrix have important meaning. They describe what 

happens with basis vector i, j, and the origin if the transformation is executed. 



Homogeneous linear transformations are matrix multiplications of 4 element 

vectors in 3D and 3 element vectors in 2D. Such linear operations preserve linear 

computations, so a line is transformed to a line or to a point if the line 

degenerates, which never happens if T is invertible.



Invertible homogeneous transformations map planes to planes. If the 

transformation is not invertible, it may happen that the resulting plane 

degenerates to a line or to a point. 

A plane is a collection of points P that satisfy the plane equation. Multiplying 

every point P by matrix T, we get a collection of points P*. To find an equation 

for P*, we transform P* back to get P since we know that P satisfies the original 

equation.

As matrix multiplication is associative, we express a similar equation for the 

transformed points as well, so they are also on a plane. We can even determine 

the parameters of the plane (e.g. normal vector). If the parameters are a column 

vector, the parameters of the original plane must be left-multiplied with the 

inverse of the transformation matrix.



The first elementary transformation considered is the 3D translation. This 

transformation computes the sum of the Cartesian coordinates of the point and of 

the translation vector p. This operation can be represented by a homogeneous 

transformation matrix, where the diagonal elements are 1, the last row contains 

the translation vector and all other elements are zero.



The second transformation is scaling along the coordinate axes. This scales x 

coordinates by Sx, y coordinates by Sy and z coordinates by Sz. Scaling is a 

diagonal homogeneous linear transformaiton, including the scaling factors and 1 

in the diagonal.



Rotation, for example around axis z, is a congruence transformation, thus it

surely belongs to the category of homogenous linear transformations. 

If we rotate around axis z, coordinate z is left unchanged and x, y are modified. 

Let us express x, y with polar coordinates r, alpha. Rotation does not modify r, 

but the polar angle is increased by the rotation algle phi.

Using trigonometric identities, we can express the transformed point’s x’, y’ 

coordinates, which indeed can be realized by a matrix multiplication.





Let us find the matrix rotating around a line crossing the origin and of direction 

w. For the sake of notational simplicity, w is assumed to have unit length.

Let us decompose the vector to be rotated, r, into a component that is parallel 

with w, r|| = w(rw), and a vector that is perpendicular to it, r=

r-w(rw). The parallel vector is not changed by the rotation. The perpendicular 

component remains in the plane that is perpendicular to w. 

The rotated perpendicular vector is expressed as a linear combination of r, and a 

vector that is in the same plane and is perpendicular to r. This vector is w  r =

w  r. If r is rotated by angle alpha, then it will be r’cos() + w  r sin().

Making the substitutions, we get the Rodrigues formula. How do we get a 

matrix? We should evaluate this formula or (1, 0, 0) and get the first 3 

components of the first row vector of the matrix. The other two rows are obtained 

similarly.



So far, we discussed affine transformations by first introducing them and then 

developing a matrix for each of them. Let us now reverse the direction of this 

process and consider a 3x3 matrix, i.e. a transformation in the 2D plane and let us 

determine what this transformation does. To make it more exciting, the third 

column is not 0, 0, 1, so it is probably a non-affine transformation. Executing the 

vector-matrix multiplication, we can obtain the transformation of point (x,y) in 

homogeneous and also in Cartesian coordinates. Note that the new Cartesian 

coordinates are non-linear functions of the original Cartesian coordinates, so this 

transformation is not affine.

What does this transformations? It is a central projection onto a line of equation 

px+qy=1 assuming the origin as the center of the projection. 

With homogeneous linear transformations we can express even non affine 

transformations but can still be sure that this transformation maps lines to lines, 

line segments to line segments, etc. 



Let us execute this transformation for line segments. We are happy because it is 

enough to transform the two endpoints and the transformed pair of points can be 

connected by a line segment according to the properties of homogeneous linear 

transformations. For the first example, this is indeed true. However, for the 

second example, the transformation is seemingly not a line segment but its 

complement on the line, i.e. two half lines. 

This is just a virtual contradiction. These two half lines also form a line segment 

in projection plane. The ideal point at the ”end” of the line glues the two ends 

together. The conclusion is that we should be careful since two points on a line 

can define two line segments that complement each other, similarly as two points 

on a cicrle can define two complementing arcs (a line in projective plane is 

topologically equivalent to a circle, we can go around it).





2D rendering is a sequence, called pipeline, of computation steps. We start 

with the objects defined in their reference state, which can include points, 

parametric or implicit curves, 2D regions with curve boundaries. As we shall

transform these objects, we they are vectorized, so curves are approximated by

polylines and regions by polygons. The rendering pipeline thus processes only

point, line (polyline) and triangle (polygon) primitives. 

Modeling transformation places the object in world coordinates. This typically

involves scaling, rotation and translation to set the size, orientation and the

position of the object. In world, objects meet each other and also the 2D 

camera, which is the window AABB (axis aligned bounding box or rectangle). 

We wish to see the content of the window in the picture on the screen, called

viewport. Thus, screen projection transforms the world in a way that the

window rectangle is mapped onto the viewport rectangle. This can be done in a 

single step, or in two steps when first the window is transformed to a square of 

corners (-1,-1) and (1,1) and then from here to the physical screen. Clipping

removes those objects parts that are outside of the camera window, or

alternatively outside of the viewport in screen, or outside of the square of

corners (-1,-1) and (1,1) in normalized device space. The advantage of 



normalized device space becomes obvious now. Clipping here is independent of the

resolution and of the window, so can be easily implemented in a fix hardware. Having

transformed primitives onto the screen, where the unit is the pixel, they are rasterized. 

Algorithms find those sets of pixels which can provide the illusion of a line segment

or a polygon. 



Vectorization is trivial for parametric curves. The parametric range is 

decomposed and increasing sample values are substituted into the equation of 

the curve, resulting in a sequence of points on the curve. Introducing a line 

segment between each subsequent pair of points, the curve is approximated by

line segments. 

If the curve is closed, using the same strategy, a polygon approximation of the

region can be found. 



Polylines are often further decomposed to line segments and polygons to 

triangles. Such a decomposition has the advantage that the resulting data 

element has constant size (a line segment has 2 vertices a triangle has 3), and 

processing algorithms will be uniform and independent of the size of the data 

element.

Polylines can be easily decomposed to line segments. However, polygons are 

not so simple to decompose to triangles unless the polygon is convex. A 

polygon is broken down to smaller polygons and eventually to triangles by 

cutting them along diagonals. A diagonal is a line segment connecting two 

non-neighboring vertices, that is fully contained by the polygon. If the polygon 

is convex, then any line segment connecting two non-neighboring vertices is 

fully contained by the polygon (this is the definition of convexity), thus all of 

them are diagonals. This is not the case for concave polygons, when line 

segments connecting vertices can intersect edges or can fully be outside of the 

polygon. 

The good news is that all polygons, even concave ones, have diagonals, so 

they can be broken to triangles by diagonals (prove it). An even better news is 



that any poligon of at least 4 vertices has special diagonals, that allow exactly one 

triangle to be cut. 



A vertex is an ear if the line segment between its previous and next vertices is 

a diagonal. According to the two ears theorem, every polygon of at least 4 

vertices has at least two ears. So triangle decomposition should just search for 

ears and cut them until a single triangle remains. 

The proof of the two ears theorem is based on the recognition that any polygon 

can be broken down to triangles by diagonals. Let us start with one possible 

decomposition, and consider triangles as nodes of a graph, and add edges to 

this graph where two triangles share a diagonal. This graph is a tree since it is 

connected (the polygon is a single piece) and cutting every edge, the graph 

falls apart, i.e. there is no circle in it. By induction, it is easy to prove that 

every tree of at least 2 nodes has at least two leaves, which correspond to two 

ears.



For every step, we check whether or not a vertex is an ear. The line segment of 

its previous and next vertices is tested whether it is a diagonal. This is done by

checking whether the line segment intersects any other edge (if it does, it is not

a diagonal). If there is no intersection, we should determine whether the line 

segment is fully outside. Selecting an arbitrary inner point, e.g. the middle, we

check whether this point is inside the polygon. By definition, a point is inside

if traveling from this point to infinity, the polygon boundary is intersected odd

number of times. 



The first relevant step of rendering is placing the reference state primitives in 

world, typically scaling, rotating and finally translating its vertices. Recall that 

it is enough to execute these transformations to vertices, because points, lines 

and polygons are preserved by homogeneous linear transformations. These are 

affine transformations, and the resulting modeling transformation matrix will 

also be an affine transformation. If the third column is 0,0,1, then other matrix 

elements have an intuitive meaning, they specify what happens with basis 

vector i, basis vector j, and the origin itself. 



Screen projection maps the window rectangle, which is the camera in 2D, onto 

the viewport rectangle, which can be imagined as the photograph. This simple 

projection is usually executed in two steps, first transforming the window onto 

a normalized square, and then transforming the square to the viewport. 

Transforming the window to a origin centered square of corners (-1,-1) and 

(1,1) is a sequence of two transformations: a translation that moves the center 

of the camera window to the origin; a scaling that modifies the window width 

and height to 2. These are affine transformations that can also be given as a 

matrix. 







Clipping is executed usually in normalized device space where x,y must be 

between -1 and 1. To be general, we denote the limits by xmin, xmax…

A point is preserved by clipping if it satisfies x > xmin= -1, x 

< xmax= +1, y > ymin= -1, y < 

ymax= +1. Let us realize that each 

of these inequalities is a clipping 

condition for a half-plane. A 

point is inside the clipping 

rectangle if it is inside all four 



half planes since the clipping 

rectangle is the intersection of the 

half planes. 

This concept is very useful when 

line segments or polygons are 

clipped since testing whether or not 

the two endpoints of line segment or 

vertices of a polygon are outside the 

clipping rectangle cannot help to 

decide whether there is an inner part 

of the primitive. 











Let us consider a line segment and clipping on a single half plane. If both 

endpoints are inside, then the complete line segment is inside since the inner 

region, the half plane, is convex. If both endpoints are outside, then the line 

segment is completely outside, since the outer region is also convex. If one 

endpoint is inside while the other is outside, then the intersection of the line 

segment and the clipping line is calculated, and the outer point is replaced by 

the intersection.



Polygon clipping is traced back to line clipping. We consider the edges of the 

polygon one-by-one. If both endpoints are in, the edge will also be part of the 

clipped polygon. If both of them are out, the edge is ignored. If one is in and 

the other is out, the inner part of the segment is computed and added as an 

edge of the clipped polygon. 

The input of this implementation is an array of vertices p and number of points 

n. The output is an array of vertices q and number of vertices m.

Usually, we can assume that the ith edge has endpoints p[i] and p[i+1]. 

However, the last edge is an exception since its endpoints are p[n-1] and p[0]. 



Before starting the discussion of rasterization it is worth looking at the pipeline 

and realizing that rasterization uses a different data element, the pixel, while 

phases discussed so far work with geometric primitives. A primitive may be 

converted to many pixels, thus the performance requirements become crucial 

at this stage. In order to maintain real-time frame rates, the process should 

output a new pixel in every few nanoseconds. It means that only those 

algorithms are acceptable that can deliver such performance.



Line drawing should provide the illusion of a line segment by coloring a few 

pixels. A line is thin and connected, so pixels should touch each other, should 

not cover unnecessary wide area and should be close to the geometric line. If 

the slope of the line is moderate, i.e. x is the faster growing coordinate, then it 

means that in every column exactly one pixel should be drawn (connected but 

thin), that one where the pixel center is closest to the geometric line. The line 

drawing algorithm iterates on the columns, and in a single column it finds the 

coordinate of the geometric line and finally obtains the closest pixel, which is 

drawn.

This works, but a floating point multiplication, addition and a rounding 

operation is needed in a single cycle, which is too much for a few 

nanoseconds. So we modify this algorithm preserving its functionality but 

getting rid of the complicated operations.



The algorithm transformation is based on the incremental concept, which 

realizes that a linear function (the explicit equation of the line) is evaluated for 

an incremented X coordinate. So when X is taken, we already have the Y 

coordinate for X-1. The fact is that it is easier to compute Y(X) from its 

previous value than from X. The increment is m, the slope of the line, thus a 

single addition is enough to evaluate the line equation. This single addition can 

be made faster if we used fixed point number representation and not floating 

point format. As these numbers are non integers (m is less than 1), the fixed 

point representation should use fractional bits as well. It means that an integer 

stores the Tth power of 2 multiple of the non-integer value. Such values can be 

added as two integers.

The number of fractional bits can be determined from the requirement that 

even the longest iteration must be correct. If the number of fractional bits is T, 

the error caused by the finite fractional part is 2^{-T} in a single addition. If 

errors are accumulated, the total error in the worst case is N 2^{-T} where N is 

the number of additions. N is the linear resolution of the screen, e.g. 1024. In 

screen space the unit is the pixel, so the line will be correctly drawn if the total 

error is less than 1. It means that T=10, for example, satisfies all requirements.



The line drawing algorithm based on the incremental concepts is as follows. First the 

slope of the line is computed. The y value is set according to the end point. This y 

stores the precise location of the line for a given x, so it is non integer. In a for cycle, 

the closest integer is found, the pixel is written, and – according to the incremental 

concept – the new y values for the next column is obtained by a single addition.

Rounding can be replaced by simple truncation if 0.5 is added to the y value. 

If fixed point representation is used, we shift m and y by T number of bits and 

rounding ignores the low T bits. 



This algorithm can be implemented in hardware with a simple counter that 

generates increasing x values for every clock cycle. For y we use a register that 

stores both its fractional and integer parts. The y coordinate is incremented by 

m for every clock cycle. 



For triangle rasterization, we need to find those pixels that are inside the 

triangle and color them. The search is done along horizontal lines of constant y 

coordinate. These lines are called scan lines and rasterization as scan 

conversion. For a single scan line, the triangle edges are intersected with the 

scan line and pixels are drawn between the minimum and maximum x 

coordinates. 

The incremental principle can also be applied to determine scan-line and edge 

intersections. Note that while y is incremented by 1, the x coordinate of the 

intersection grows with the inverse slope of the line, which is constant for the 

whole edge, and thus should be computed only once. 

Again, we have an algorithm that uses just increments and integer additions.





From system point of view, a graphics application handles the user input, changes 

the internal state, called the virtual world by modeling or animating it, and then 

immediately renders the updated model presenting the image to the user. This 

way, the user immerses into the virtual world, i.e. he feels that he is promptly 

informed about its current state.

The process from the input to the virtual world is called the input pipeline. 

Similarly, the process mapping the virtual world to the screen is the output 

pipeline.

The complete system is a (control) loop with two important points, the virtual 

world and the user. In the output pipeline, the virtual world is vectorized first 

since only lines and polygons can be transformed with homogeneous linear 

transformations. Then modeling, view and projection transformations are 

executed moving the current object to normalized device space. Here clipping is 

done, then the object is transformed to the screen, where it is rasterized. Before 

being written in the frame buffer, pixels can undergo pixel operations, needed, for 

example, to handle transparent colors. The frame buffer is read periodically to 

refresh the screen. The user can see the screen and interact with the content by 

moving the cursor with input devices and starting actions like pressing a button. 

Such actions generate events taking also the screen space position with them. 



Screen space is the whole screen in full-screen mode or only the application window. The 

unit is the pixel. Note that screen space is different for the operating system and for 

opengl. For MsWindows and XWindow, axis y points downward while in opengl y points 

upward. Thus, y must be flipped, i.e. subtracted from the vertical resolution. The input 

pixel coordinate goes from the screen to modeling space, thus inverse transformations are 

applied in the reverse order. With input devices not only the virtual world can be modified 

but also the camera can be controlled. 



Our graphics application runs under the control of an operating system together 

with other applications. The operating system handles shared resources like input 

devices and the frame buffer as well, so a pixel data in the frame buffer can be 

changed only via the operating system. Modifying pixels one by one from the 

application would be too slow, so a new hardware element, called the GPU, 

shows up that is responsible for many time consuming steps of rendering. The 

GPU is also a shared device that can be accessed via the operating system. Such 

accesses are calls to a library for the application program. We shall control the 

GPU through a C graphics library called OpenGL. 

On the other hand, to catch input events handled by the operating system, we 

need another library. We shall utilize the freeGLUT for this purpose, due to its 

simplicity and the portability (it runs over MsWindows, Xwindow, etc.)

The operating system separates the hardware from the application. The operating 

system is responsible for application window management and also letting the 

application give commands to the GPU via OpenGL, not to mention the re-

programming of the GPU with shader programs. 

OpenGL is collection of C functions of names starting with gl. The second part of 

the name shows what the function does, and the final part allows to initiate the 

same action with different parameter numbers and types (note that there is not 



function overloading in C). 

To get an access to the GPU via OpenGL, the application should negotiate this with the 

operating system, for which operating system dependent libraries, like the wgl for 

MsWindows and glX for Xwindow are available. Using them is difficult, and more 

importantly, it makes our application not portable. So, to hide operating system dependent 

features, we use GLUT, which translates generic commands to the operating system on 

which it runs. It is simple and our application will be portable. GLUT function names start 

with glut.



The graphics output is implemented by OpenGL. The application window 

management and the input are the responsibilities of GLUT. Our application 

consists of a main function and a set of event handlers (we use event driven 

programming paradigm in interactive systems). In main, our application program 

interacts with GLUT and specifies the properties of the application window (e.g. 

initial resolution and what a single pixel should store), and also the event 

handlers.

An event handler is a C function that should be programmed by us. This function 

is connected to a specific event of GLUT, and having established this connection 

we expect GLUT to call our function when the specific event occurs. A partial list 

of possible events are:

- Display event that occurs when the application window becomes invalid and 

thus GLUT asks the application to redraw the window to restore its content.

- Keyboard event occurs when the user presses a key having ASCII code.

- Special event is like Keyboard event but is triggered by a key press having no 

ASCII code (e.g. arrows and function keys). 

- Reshape handler is called when the dimensions of the application window are 

changed by the user.

- Mouse event means the pressing or releasing the button of the mouse.



- Idle event indicates the time elapsed and our virtual world model should be updated to 

reflect the new time.

Event handler registration is optional with the exception of the Display event. If we do not 

register a handler function, nothing special happens when this event occurs. 



Primitives (e.g. a line or a polygon) go down the pipeline, each having multiple 

vertices associated with their homogeneous coordinates and possible attributes 

(e.g. vertex color). Primitives must be transformed to normalized device space for 

clipping, which requires the transformation of its vertices with the modeling, 

viewing and projection transformation matrices. Clipping is done, so is 

homogeneous division if the fourth homogeneous coordinate is not 1. Then the 

primitive is transformed to screen space taking into account the viewport position 

and size. The primitive is rasterized in screen space. 

For performance reasons, OpenGL 3 retained mode requires the application to 

prepare the complete data of the vertices and attributes of a single object rather 

than passing them one by one. These data are to be stored in arrays on the GPU, 

called Vertex Buffer Object (VBO). An object can have multiple VBOs, for 

example, we can put coordinates in a single array and vertex colors in another. 

Different VBOs are encapsulated into a Vertex Array Object (VAO) that also 

stores information about how the data should be fetched from the VBOs and sent 

to the input registers of the vertex shader. A single input register can store four 32 

bit long words (4 floats called vec4, or four integers) and is called Vertex Attrib

Array. 

The responsibility of the Vertex Shader is to transform the object to normalized 



device space. If the concatenation of model, view and projection matrices is given to the 

Vertex Shader, it is just a single matrix-vector multiplication. The output of the Vertex

Shader goes to output registers including gl_Position storing the vertex position in 

normalized device space and other registers storing vertex attributes. Clipping, 

homogeneous division, viewport transformation and rasterization are performed by the 

fixed function hardware of the GPU, so these steps cannot be programmed. The output of 

the rasterization step is the sequence of pixels with pixel coordinates and interpolated 

vertex attributes. Pixel coordinates select the pixel that is modified in the frame buffer. 

From other vertex attributes and global variables, the pixel color should be computed by 

another programmable unit called the fragment shader.  



Let us zoom out the connection of the vertex buffer objects, vertex shader input 

registers called AttribArrays, and vertex shader input variables. The object is 

described in arrays called VBOs. For example, coordinates can be stored in one 

array, colors in another (this strategy is called Structure Of Arrays, or SOA for 

short). To allow the Vertex Shader to process a vertex, its input registers must be 

filled with the data of that particular vertex, one vertex at a time. Function 

glVertexAttribPointer tells the GPU how to interpret the data in VBOs, from 

where the data of a single vertex can be fetched, and in which AttribArray a data 

element should be copied. For example, coordinates can be copied to 

AttribArray0 while colors to AttribArray1 (a single register can store 4 floats).

When the Vertex Shader runs, it can fetch its input registers. It would not be too 

elegant if we had to refer to the name of the input register, e.g. AttribArray 0, so 

it is possible to assign variable names to it with glBindAttribLocation. For 

example, AttribArray0 can be the ”vertexPosition”. 

Note that this was only one possibility of data organization. For example, it is 

also perfectly reasonable to put all data in a single array where coordinates and 

attributes of a single vertex are not separated (this strategy is the Array Of 

Structures, or AOS). In this case glVertexAttribPointer should tell the GPU where 

an attribute starts in the array and what the step size (stride) is.



In the main function of a graphics application, we set up the application window 

with the help of GLUT telling the initial position, size, what data should be stored 

in a pixel, and also what functions should be called when different events happen. 

At the end, the message loop is started, which runs in circles, checks whether any 

event occurred for which we have registered an event handler, and if this is the 

case, it calls the respective event handler. 

The main function can also be used to initialize data in OpenGL (on the GPU), 

especially those which are needed from the beginning of the program execution 

and which do not change during the application. We need shader programs from 

the beginning, so this is a typical place to compile and link shader programs and 

upload them to the GPU.

Let us start with the main function. Two header files are needed.

GLEW is the opengl Extension Wrangler library that finds out what extensions 

are supported by the current GPU in run time. GLUT is a windowing utility 

toolkit to set up the application window and to manage events. 

In the main functions, first the application window is set up with glut calls:

- glutInit initializes glut and allows use to communicate with the GPU via 



OpenGL. 

- glutInitContextVersion sets the required OpenGL version. In this case, we want opengl

3.0.

- glutInitWindowSize specifies the initial resolution of the application window.

- glutInitWindowPosition specifies where it is initially placed relative to the upper left 

corner of the screen. 

- glutInitDisplayMode tells glut what to store in a single pixel. In the current case, we 

store 8 bit (default) R,G,B, and A (opacity) values, in two copies to support double 

buffering. 

- glutCreateWindow creates the window, which shows up.

The Extension Wrangler is initialized

- glewExperimental = true: GLEW obtains information on the supported extensions from 

the graphics driver, so if it is not updated, then it might not report all features the GPU 

can deliver. Setting glewExperimental to true gets GLEW to try the extension even if it 

is not listed by the driver. 

- glewInit makes the initialization

From here, we can initialize OpenGL. 

- glViewport sets the render target, i.e. the photograph inside the application window

- onInitialization is our custom initialization function discussed on the next slide.

The remaining functions register event handlers and start the message loop. For the time 

being, only the onDisplay is relevant, which is called whenever the application window 

becomes invalid. We use this function to render the virtual world, which consists of a 

single green triangle, directly given in normalized device space.



In onInitialization those opengl data are initialized that are typically constant 

during the application, so they do not have to be set in every drawing. In our 

program, this includes the constant geometry (the triangle), and the GPU shader

programs. The shaderProgram and the vao are set here but also used in the 

onDisplay, therefore they are global variables. 

First we allocate one vertex array object and its id is vao. With Binding, this is 

made active, which means that all subsequent operations belong to this vao until 

another vao is bound or the current one is unbound with binding 0. 

In the second step, one vertex buffer object is allocated, which will be part of the 

active vao (we have just one, which is active). This vertex buffer object is made 

active, so all subsequent operations are related to this until another is bound. 

Array ”vertices” stores the geometry of our triangle, and is obviously in the CPU 

memory. It contains 6 floats, i.e. 24 bytes. With glBufferData the 24 bytes are 

copied to the GPU. With the last parameter of glBufferData we can specify which 

type of GPU memory should be used (the GPU has different types of memory 

with different write and read speeds and capacity, so the driver may decide where 

to copy this 24 bytes based on our preference). We say that the 24 bytes will not 

be modified but it would be great if it could be fetched fast (constant memory 



would be an ideal choice). So far we said nothing about the organization and the meaning 

of the data, it is simply 24 bytes, the GPU does not know that it defines 3 vertices, each 

with 2 Cartesian coordinates, which are in float format. 

glVertexAttribPointer() defines the interpretation of the data and also that the data 

associated with a single vertex goes to the input register (AttribArray) number 0. It 

specifies that a single vertex have two floats, i.e. 8 bytes. If it was non floating point 

value, it would also be possible to put the binary point to the most significant bit, but we 

set this parameter to GL_FALSE. 

The last two parameters tell the GPU how many bytes should be stepped from one vertex 

to the other (if it is 0, it means that the step size is equal to the data size, 2 floats in this 

case), and where the first element is (at the beginning of the array, so the pointer offset is 

zero). Stride and offset are essential if interleaved vbos are used.



The remaining part of the onInitialization gets the shader programs ready. The 

source of the shader programs can be read from a file or directly copied from a 

string. We use here the latter option. As programs are typically written in more 

than one line, the string cannot be simple “…” but should be special and hold 

new line characters, which is possible with the R”( … )” C++ feature. 

The vertex shader source code starts with the version number that tells the 

compiler how matured GPU is assumed during execution. 

Uniform parameters are like constants that cannot change during the drawing of a 

single primitive.  MVP is a 4x4 matrix (type mat4), which represents the model-

view-projection matrix. The vertex shader has one per-vertex attribute, defined 

with variable name vp and storing the x, y coordinates of the current vertex. The 

vertex shader code computes the multiplication of 4 element vector that is the 

conversion of vp to 3D homogeneous coordinates and the 4x4 MVP matrix, and 

the result is written into a specific output register called gl_Position, which 

should get the point transformed to normalized device space. The vertex shader

could output other variables as well, which would follow the point during 

clipping and rasterization, and would be interpolated during these operations. 

Clipping, homogeneous division, viewport transform and rasterization are fixed 

function elements that cannot be programmed. 



The output of the fixed function part is the sequence of pixels (called fragments) 

belonging to the current primitive and also the variables that are output by the vertex 

shader, having interpolated for the current pixel. The pixel address is in register 

gl_FragCoord, which cannot be modified, but from the other registers and uniform 

variables, the color of this fragment can be obtained by the fragment shader processor. It 

has one uniform input called the color, which will determine the output color stored in 

variable outColor.

The very beginning of the pipeline, vertex coordinate variable vp is connected to the 

vertex shader input register (AttribArray) number 0 as told by 
glBindAttribLocation. The output of the fragment shader goes 

to the frame buffer as requested by glBindFragDataLocation.

Finally, the shader program is linked, copied to the shader

processors to be executed by them. 



We have registered a single event handler (onDisplay) that reacts to the event 

occurring when the application window gets invalid (DisplayFunc). 

In this function, the virtual world (consisting of the single green triangle) is 

rendered. 

glClearColor sets the color with which the pixels of the application window is 

cleared. This color is black. The actual clearing is done by glClear. 
GL_COLOR_BUFFER_BIT stands for the frame buffer 

storing color values. 

Drawing consists of setting the values of uniform 

variables of shaders and then forcing the geometry 

through the pipeline, which is called the draw call. 

Finally, the buffer used for drawing so far is swapped 

with the buffer the user could see so far by 

glutSwapBuffers, so the result will be visible to the 

user. 

The fragment shader has a single uniform variable 

called color and of type vec3, which can be set with 



function glUniform3f(location, 0.0f, 1.0f, 0.0f) to value 

(0,1,0)=green. Note that ”3f” at the end of the function 

name indicates that this function takes 3 float parameters. 

Parameter location is the serial number of this uniform 

variable, which can be found with 

glGetUniformLocation(shaderProgram, “color") which returns 

the serial number of uniform variable called “color” in the

shader programs. 

The vertex shader has uniform variable MVP of type mat4, 

i.e. it is a 4x4 matrix. First, its serial number must be 

obtained, then its value can be set with glUniformMatrix4fv. 

Here fv means that matrix elements are floats (f) and 

instead of passing the 16 floats by value, the address of 

the CPU array is given (v) from which the values can be 

copied (pass by address). The second parameter of 

glUniformMatrix4fv says that 1 matrix is passed, the third 

parameter that this is a row-major matrix and should be kept 

this way. 

This issue can cause a lot of confusion:

- In C or C++ two-dimensional matrices are of row-major.

- In GLSL two-dimensional matrices are of column-major.

So if we use them without caution, we might apply the 

transpose of the matrix and not what we wanted. There are 

many solutions for this problem:

1. Use an own 2D matrix class in C++ that follows the 

column-major indexing scheme, and consider vectors of 

points as row vectors both on the CPU and on the GPU.

2. Use an own 2D matrix class in C++ that follows the 

column-major indexing scheme, and consider vectors of 

points as column vectors both on the CPU and on the GPU. 

The matrices will be transposed with respect to the

previous solution.

3. Use the standard 2D matrix indexing on the CPU (row-

major) and the standard 2D matrix indexing on the GPU 

(column-major), but consider points as row vector in the 

CPU program (and therefore put on the left side of the 

transformation matrix) and column vector in the GPU 

program (and put on the right side of the matrix). 

4. Use the standard 2D matrix indexing on the CPU (row-

major) but transpose the matrix when passed to the GPU, 

and consider points as row vector both in the CPU program 



and in the GPU program. 

We use option 4, and setting the third parameter of  

glUniformMatrix4fv to TRUE enables just the required 

transpose. 

Vertex Array Objects are our virtual world objects already 

uploaded to the GPU. With glBindVertexArray(vao) we can 

select one object for subsequent operations (drawing) and 

finally glDrawArrays gets the current VAO to feed the 

pipeline, i.e. this object is rendered. We may not send all 

vertices of this object, so with startIdx and number of 

elements a subset can be selected. Setting startIdx to 0 and 

sending all 3 points, our whole triangle is rendered. The 

first parameter of glDrawArrays tells the GPU the topology 

of the primitive, that is, what the vertices define. In our 

case, triangles, and as we have only 3 vertices, a single 

triangle.  



This is the set of possible primitive types. Basically points, line segments and 

triangles, but in sophisticated options sharing vertices is also possible. 









In order to compute the image, the power arriving at the eye from the solid 

angle of each pixel needs to be determined on different wavelengths.

We establish a virtual world model in the computer memory, where the user is 

represented by a single eye position and the display by a window rectangle. 

Then we compute the power going through the pixel toward the eye on 

different wavelengths, which results in a power spectrum. 

If we can get the display to emit the same photons (i.e. the same number and 

of the same frequency), then the illusion of watching the virtual world can be 

created. As the human eye can be cheated with red, green, and blue colors, it is 

enough if the display emits light on these wavelengths. The last step of 

rendering is the conversion of the calculated spectrum to displayable red, 

green and blue intensities, which is called tone mapping. If we compute the 

light transfer only on these wavelengths, then this step can be omitted and the 

resulting spectrum can be used directly to control the monitor.

One crucial question is what exactly should be computed that describes the 

strength of the light intensity and when the pixel is controlled accordingly, 

provides the same color perception as the surface. Note that the pixel is at a 

different distance than the visible surface. The orientations of the display 



surface and of the visible surface are also different. The total emitted power would 

definitely be not good since it would mean less photons for the eye for farther sources.  



We should work with power density instead of the power, that is computed 

with respect to the solid angle in which the light is emitted and with respect to 

the size of the projected surface. The density computed as the power divided 

by the projected surface and the solid angle of emission is called the radiance. 

An important theorem states that if two surfaces have the same radiance, then 

they look identical no matter whether they are at a different distance or have 

different orientation. The proof is based on that if in a solid angle the eye 

would gather the same number of photons, i.e. energy, then it would not be 

able to distinguish the source surfaces. Let us compute this power for two 

surfaces that are seen in the same solid angle and have the same radiance.

If the surface is closer, then  its real area is smaller, but the solid angle in 

which the pupil of the eye can be reached from this surface is larger. Both the 

solid angle and the surface changes with the square of the distance and the two 

factors compensate each other. If the surface is not perpendicular to the 

viewing direction, then the surface seen in a given solid angle is larger, but the 

cosine factor will be proportionally smaller, so again we see no difference.

So, the conclusion is that we should compute the radiance of a surface and set 



the pixel of the display to have the same radiance. Then the two surfaces will be 

identical for the eye.

The fact that surfaces having the same radiance but at different distances look similar 

can also be interpreted as that the radiance does not change along a ray.



The reflected radiance of a surface depends on the irradiance and the 

likelihood of the reflection. The irradiance is the incident radiance and a 

geometric factor that expresses that the illumination is weaker if the light 

arrives from a non-perpendicular direction since a unit cross section light beam 

illuminates a larger surface on which the photons are distributed. This cosine 

term is also called the geometric term and term expresses that a non 

perpendicular illumination  is spread over a larger surface. The likelihood of 

reflection is expressed by the Bi-directional Reflectance Distributrion

Function. In real life, BRDFs are symmetric.
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In computer graphics we consider photons in the visible wavelength range, roughly from 300 

to 700 nanometer wavelengths. A photon has zero rest mass, otherwise it would not be able to 

fly with the speed of light. However, it has non-zero energy and impulse. The energy is 

proportional to frequency f of the light as stated by Einstein who invented this law when 

examining the photonelectric effect. He got his Nobel prize for this and not for the theory of 

relativity. Using the equivalence of the energy and mass, which was also published by Einstein 

as a short paper in 1905, we can assign a relativistic weight to the photon as the Planck 

constant h multiplied by the frequency and divided by the square of the speed of light.

If f is small, then this relativistic mass is small. When photons meet a material, photons collide 

or scatter by the electrons or less probably with the core of atoms. For photons belonging to 

the visible spectrum, the relativistic mass of the photon is much smaller than the mass of the 

electron, thus a photon bounces off the electron like a ball bounces off from a rigid wall or a 

billiard ball bounces off from the edge of the table. If the collision is elastic, then the photon 

energy is preserved and the electron does not change its energy level.

If the collision is inelastic, then the energy of the photons is absorbed by the electron, this is 

the photoelectic effect, and the number of photons gets smaller. The probability of inelastic 

scattering, i.e. the albedo associated with a collision is energy dependent. 

Summarizing when photons meet electrons, their number may get smaller but their energy 

level and consequently their frequency remain the same. This is the reason that in computer 

graphics wavelengths or frequencies are handled independently. 



The simplest arrangement for the light transfer is a single plane that separates 

the space into two half spaces of different materials. According to the laws of 

geometric optics, the illumination ray is broken to a relfection ray meeting the 

reflection law and a refraction ray obeying the Snell’s law of refraction. Here n 

is the index of refraction, which expresses the ratios of speeds of light outside 

and inside the material. The Fresnel equations define the amount of reflected 

energy (i.e. the probability that a photon is reflected). The Fresnel function can 

be calculated from index of refraction n, extinction k, incident angle theta’ and 

refraction angle theta. The extinction is negligible for non-metals. We also 

show a simplified Fresnel term.



The Fresnel function depends on the wavelength and on the incident angle. 

When we see an object, we can observe surfaces of many different 

orientations, so we perceive the Fresnel function as a whole.



To render smooth surfaces, we should compute the ideal reflection direction. 

Assume that incident direction v and surface normal N are unit length vectors.

Incident direction v is decomposed to a component parallel to the normal and a 

component that is perpendicular to it. Then, the reflection direction is built up 

from these two components.



The refraction direction calculation is also similar. The refraction direction v_t 

is expressed as a combination of the normal vector and a vector that is 

perpendicular to the normal, N_perpendicular. These vectors should be 

combined with weights cos(beta) and sin(beta) where beta is the refraction 

angle.

N_perpendicular is expressed from v+N cos(alpha) by dividing it with its 

length sin(alpha).

Then sin(beta)/sin(alpha) is replaced by the reciprocal of the index of 

refraction.  



Putting these together, we can implement a material class representing ideally 

smooth surfaces. By “smooth” surface we mean a surface that can be assumed

to be planar if we consider just a region that is visible in a pixel. 

The material properties are expressed by the Fresnel function at perpendicular 

illumination, F0, which is wavelength dependent since the index of refraction 

and the extinction are wavelength dependent. In addition to the Fresnel, we 

also need the index of refraction for the calculation of the refraction direction. 

Here, wavelength dependence is usually ignored, so we do not simulate 

dispersion.



Surfaces are usually not smooth, so they reflect light not just in the ideal 

reflection direction but practically in all possible directions. Physically, we can 

imagine these rough surfaces as a random collection of ideal mirror 

microfacets that reflect light according to their random orientation. 

As we see not a single microfacet in a pixel, but a large collection of them, we 

perceive the average radiance reflected by this collection.

Photons may have a single scattering on these microfaces when the average is 

maximum around the ideal reflection direction of the mean surface. On the 

other hand, photons may get scattered multiple times, when they “forget” their 

original direction, so the reflection lobe will be roughly uniform.

Instead of following a probabilistic reasoning, we handle these rough surfaces 

as a black-box, i.e. empirical model. That is, we describe the behavior of the 

surface based on everyday experience without any structural analysis. By 

experience, we say that a rough surface reflects light into all directions, but 

more light is reflected into the neighborhood of the ideal reflection direction. 



Our first model is for very rough surfaces where all photons get reflected 

multiple times. Such materials (snow, sand, wall, chalk, cloth etc) have a matte 

look, they look the same from all viewing directions. Thus, the radiance, which 

equals to the incident radiance times the BRDF times the geometry term, is 

independent of the viewing direction. Incident radiance and the geometry term 

are already independent of the viewing direction, thus the BRDF must also be 

independent of the viewing direction. According to Helmholtz reciprocity, if 

the BRDF is independent of the viewing direction, it must be independent of 

the illumination direction as well, so the BRDF is direction independent. 

Diffuse surfaces correspond to very rough surfaces where a photon collides 

many times. The Fresnel depends on the wavelength, which is strong for 

metals and weak for non-metals. Even if a single reflection changes the 

spectrum just a little, multiple reflections amplify this effect, so the final 

reflected light will have a modified spectrum. Diffuse reflection is primarily 

responsible for the “own color” of the surface.



The reflected radiance is the incident radiance times the BRDF, which is 

constant now, and the geometry term. So for diffuse surfaces, the reflected 

radiance is proportional to the cosine of the orientation angle. This cosine can 

be computed as a dot product of the unit surface normal and the unit 

illumination direction.

If the cosine is negative, i.e. the angle between the surface normal and the 

illumination direction is greater than 90 degrees, then the illumination is 

blocked by the object whose surface is considered. In such cases, the negative 

value is replaced by zero.



Shiny, glossy or specular surfaces also reflect the light in all possible 

directions, but they look differently from different viewing directions. We can 

observe the blurred reflection of the light sources, thus they reflect more light 

close to the ideal reflection direction. 

We model such surfaces as a combination of diffuse reflection where the 

radiance is constant and a specular reflection where the radiance is great 

around the ideal reflection direction. According to the microfacet model, 

diffuse reflection is caused by multiple light microfacet interaction while 

specular reflection is the result of a single light microfacet interaction.  In 

order to model the specular reflection lobe, we need a function that is 

maximum at the reflection direction and decreases in a controllable way if the 

viewing direction gets farther from the reflection direction. Phong and Blinn 

proposed the cos^shininess(delta) function where delta is the angle between 

the macroscopic surface normal and the microfacet normal.  The shininess 

exponent defines how shiny the surface is.



Diffuse reflection simulates multiple light-surface interaction and is colored. 

Specular reflection is the model of the single light-surface interaction and it is 

proportional to the Fresnel function. For non metals, the wavelength 

dependence of the Fresnel is moderate, so for non metals the specular 

reflection is said to be ”white”.





Real light sources are defined by their emission radiance, L^e. When the 

reflected radiance of a point is considered, the contribution of all those light 

source points should be added which are visible from the point of interest. This 

means integration. Thus, we often prefer abstract light source models, that can 

illuminate a surface just from a single direction, which saves integration. 

In case of directional light sources, the radiance is constant everywhere, so is 

the illumination direction. In other words, the illumination rays are parallel. 

The Sun is an example for directional light source if we are on the Earth. 

For point light sources, the illumination direction points from the location of 

the source to the illuminated point. The radiance decreases with the square of 

the distance.

If we ignore the dependence of the radiance on the distance, directional light 

sources can be considered as point sources being at infinity.



Rendering requires the determination of the surface that is visible through a 

pixel, then the computation of the radiance of this surface in the direction of 

the eye.

The radiance computed at least on the wavelengths of red, green, and blue, and 

the results will be written into the frame buffer. In this calculation, light 

sources are defined by their radiance or power, rough surfaces with their 

BRDFs, smooth surfaces with their Fresnel functions.



There are different tradeoffs between accuracy of the light transport 

computation and the speed of the computation. 

In the local illumination setting, when the radiance of a surface is calculated, 

we consider only the direct contribution of the light sources and ignore all 

indirect illumination. 

In recursive ray tracing, indirect illumination is computed only for smooth 

surfaces, in the ideal reflection and refraction directions.

In the global illumination model, indirect illumination is taken into account for 

rough surfaces as well. In engineering applications we need global 

illumination solutions since only these provide predictable results. However, in 

games and real time systems, local illumination or recursive ray tracing will 

also be acceptable. 



Light is an electromagnetic wave, color is just an illusion created by the

human eye and the brain. As the eye is a poor spectrometer, we can cheat it

with a different spectrum, the eye cannot tell the difference. This fact is 

exploited by displays, which can emit light just around three wavelengths. So

the task is to convert the computed spectrum to the intensities of the three

lamps associated with a pixel. To solve this, we should understand how the

illusion of color is created. As the illusion is deep in our brain, we can use only

subjective comparative experiments to find out what color means. 

In our experiment, we have two white sheets, the first is illuminated by a unit 

power monochromatic light beam of wavelength lambda, the other is by three

lamps of controllable intensities and of wavelengths, say, 444, 526, 645 

nanometers, which could be seen as red, green and blue (we could choose

other reference wavelenths as well, they just have to be far enough; this 

particular selection is justified by the fact that there exists materials that emit 

light on these wavelengths). A human observer sits in front of the two white 

sheets and his task is to control the intensities of the three lamps in order to 

eliminate any perceived difference between the two sheets. If it happens, the 

monochromatic light and the controlled three component light provide the 

same color and are called metamers. If the same experiment is repeated in 

many discrete wavelengths, three color matching functions can be obtained. 



Note that the red and the green matching function have negative parts as well, which 

means, for example, that the 500 nm light can be matched only if some red is added to 

it.

In the second experiment we can try to match two, three, etc. component light beams 

and beams of non-unit intensity. We will come to the conclusion that the 

corresponding r,g,b values of polychromatic light are the sums of the r,g,b, primaries 

of the monochromatic components, and also that if the intensity of the beam is not 

unit, then the r,g,b intensities should also be multiplied by the same factor. This means 

that colors are linear objects. 



Based on these experiments, we can establish the Grasmann laws of color 

science. Any spectrum can be matched with three primaries by weighting the 

monochromatic components by the color matching functions and adding 

(integrating) different monochromatic components.



A physically plausible simulation would be executed on many wavelengths 

(note that wavelengths can be handled independently) resulting in a visible 

spectrum. The final step of rendering is the conversion of this spectrum to red, 

green, blue intensities, which can be set in the frame buffer, and ultimately on 

the display. 

However, in many cases, we use an approximation. We assume that light 

sources emit light directly on the wavelengths of the red, green, blue. Thus, we 

can immediately get the r,g,b, values without any integration. Note, however, 

that the rendering process is not linear since the products of radiance values 

and BRDFs are computed, so this simpler option is just an approximation.





In local illumination rendering, having identified the surface visible in a 

pixel, we have to compute the reflected radiance due to only the few 

abstract light sources. An abstract light source may illuminate a point just 

from a single direction. The intensity provided by the light source at the 

point is multiplied by the BRDF and the geometry term (cosine of the angle 

between the surface normal and the illumination direction). The intensity 

provided by the light source is zero if the light source is not visible from the 

shaded point. For directional sources, the intensity and the direction are the 

same everywhere. For point sources, the direction is from the source to the 

shaded point and decreases with the square of the distance. 



The BRDF times the geometry factor equals to the following expression for 

diffuse + Phong-Blinn type materials. Here we use different product 

symbols for different data types; * for spectra,  for multiplying with a 

scalar, and  for the dot product of two vectors. 



In the local illumination model all surfaces that are not directly visible from 

the light sources are completely back. However, this is against everyday 

experience when some light indirectly illuminates even hidden regions as 

well. So, we add an ambient term to the reflected radiance, where the 

intensity is uniform everywhere and in all directions, and the ambient 

reflection k_a is a material property (if a physically accurate model is 

applied, k_a = k_d*\pi).

Note, however, that adding the ambient term is a very crude approximation 

of true indirect lighting, which can be obtained by global illumination 

algorithms (upper right image).



A fundamental operation of ray tracing is the identification of the surface 

point hit by a ray. The ray may be a primary ray originating at the eye and 

passing through the pixel, it can be a shadow ray originating at the shaded 

point and going towards the light source, or even a secondary ray that also 

originates in the shaded point but goes into either the reflection or the 

refraction direction. The intersection with this ray is on the ray, thus it 

satisfies the ray equation, ray(t)=eye + vt for some POSITIVE ray parameter 

t, and at the same time, it is also on the visible object, so point ray(t) also 

satisfies the equation of the surface. A ray may intersect more than one 

surface, when we need to obtain the intersection of minimal positive ray 

parameter since this is the closest surface that occludes others.

Function FirstIntersect finds this point by trying to intersect every surface 

with function Intersect and always keeping the minimum, positive ray 

parameter t. 



The implementation of function Intersect depends on the actual type of the 

surface, since it means the inclusion of the ray equation into the equation of 

the surface. The first example is the sphere. Substituting the ray equation 

into the equation of the sphere and taking advantage of the distributivity of 

the scalar product, we can establish a second order equation for unknown 

ray parameter t. A second order equation may have zero, one or two real 

roots (complex roots have no physical meaning here), which corresponds to 

the cases when the ray does not intersect the sphere, the ray is tangent to the 

sphere, and when the ray intersects the sphere in two points, entering then 

leaning it. From the roots, we need the smallest positive one.

Recall that we also need the surface normal at the intersection point. For a 

sphere, the normal is parallel to the vector pointing from the center to the 

surface point. It can be normalized, i.e. turned to a unit vector, by dividing 

by its length, which equals to the radius of the sphere.





The equation of the sphere is an example of a more general category, the 

implicit surfaces that are defined by an implicit equation of the x,y,z 

Cartesian coordinates of the place vectors r of surface points. Substituting 

the ray equation into this equation, we obtain a single, usually non-linear 

equation for the single unknown, the ray parameter t. Having solved this 

equation, we can substitute the ray parameter t* into the equation of the ray 

to find the intersection point. 

The normal vector of the surface can be obtained by computing the gradient 

at the intersection point. To prove it, let us express the surface around the 

intersection point as a Taylor approximation. f(x*,y*,z*) becomes zero since 

the intersection point is also on the surface. What we get is a linear equation 

of form n\cdot(r – r0) = 0, which is the equation of the plane, where n=grad 

f.

So, the gradient is the normal vector of the plane that approximates the 

surface locally in the intersection point.





The triangle is the most important primitive because we often use it to approximate 

arbitrary surfaces. So effective ray-triangle intersection algorithms are still in the focus 

of research. Now, we present a very simple algorithm, which is far behind the leading 

methods in terms of efficiency. 

The algorithm consists of two steps, first the intersection with the plane of the triangle 

is found, then we determine whether or not the ray-plane intersection point is inside the 

triangle. Suppose that the triangle is given by its vertices r1, r2, r3. The equation of its 

plane is n\cdot(r-r0)=0 where n is the normal vector and r0 is a point of the plane. Place 

vector r0 can be any of the three vertices and normal vector n can be computed as the 

cross product of edge vectors r2-r1 and r3-r1. Substituting the ray equation into this 

linear equation, we get a linear equation for t, which can be solved. If t is negative, the 

intersection is behind the eye, so it must be ignored. The positive t is substituted back to 

the ray equation giving p as the intersection with the plane.

Now we should determine whether p is inside the triangle. An edge line separates the 

plane into two half planes, a “good”  or one (this is the left one if the edge vector points 

from r1 to r2) that contains the triangle and the third vertex and a “bad” one that 

contains nothing. Point p must be on the good side, i.e. where the third vertex is. Points 

on the left and right with respect to edge r1-r2 can be separated using the properties of 

the cross product. 

Assuming that we look at the plane from above, (r2 - r1)  (p - r1) will point towards 

us if p is on the left, and it will point down if p is on the right.

As n = (r2 - r1)  (r3 - r1) points towards us, we can check whether (r2 - r1)  (p - r1)

has the same direction by computing their dot product and checking if the result is 



positive (the dot product of two vectors point into the same direction is positive, the dot 

product of two oppositely pointing vectors is negative). A single inequality states that the point 

is on the good side with respect to a given edge vector. If this condition is met for all three edge 

vectors, the point is inside the triangle.



On the top level, ray tracing rendering visits pixels one by one. For every 

pixel, the virtual camera has a point on its window (in real space we have 

the user and the screen; in virtual world one of the user’s eye is the virtual 

eye and the display surface is a rectangle). The origin of primary rays is 

always the eye position. The direction of a ray is from the eye to the center 

of the pixel on the window rectangle, which is calculated by the GetRay 

function. With this ray, function Trace is called, which computes the 

radiance transferred back by this ray (i.e. the radiance of the point hit by this 

ray in the opposite of the ray direction). The radiance on the wavelengths of 

r,g,b is written into the current physical pixel. 



To implement the GetRay function, the virtual camera should be defined in 

the virtual space. The user’s location is specified by the place vector called 

eye. The display surface is represented by a 2D rectangle in the virtual 

world coordinates. The center of this rectangle is specified by the lookat 

point, and its orientation and size are defined by two vectors. Right points 

from the center of the window to the right edge, up from the center to the 

top edge. If the resolution of the target image is XM x YM, then the center 

of pixel (X,Y) in world coordinates is p = lookat + (2X/XM-1)right + 

(2Y/YM-1)up.



The trace function gets the ray that involves its origin and direction vectors. 

First we compute the intersection that is in front of the eye and is closest to 

the eye. The already implemented solution is firstIntersect. This function 

indicates with a negative value if there is no intersection. In this case, trace 

returns with the radiance of the ambient illumination.

If some surface is seen, trace computes the contribution of the abstract light 

sources. To check the visibility of a particular light source, a ray, called 

shadow ray, is sent from the shaded point towards the light source. If this 

ray intersects an object and this intersection is closer than the light source, 

the object occludes the light source so this point is in shadow. 

If the surface is smooth and is ideally reflective, then the reflection direction 

is computed and the trace function is called recursively to compute the 

radiance of reflection direction. The same is done for the refraction direction 

if the surface is refractive.



To simulate also smooth surfaces responsible for mirroring and light 

refraction, the local illumination model should be extended. When the 

surface visible from the eye is identified, we calculate the radiance as the 

contribution from abstract light sources but also add the reflection of the 

radiance from the ideal reflection direction and the refraction of the radiance 

coming from the ideal refraction direction. According physics, the scaling 

factors of the radiance values are the Fresnel and 1-Fresnel for reflection 

and refraction, respectively. However, we do not always insists of physical 

precision so may use other scaling factors that are set by an artist and not 

computed as the Fresnel function. 

This equation expresses the radiance of a surface point in a given direction 

as the function of the direct light sources and the radiance coming from the 

ideal reflection and refraction directions. The question is how these extra 

terms can be computed. 

Let us recognize, that the computation of the radiance delivered back by 

reflection and refraction rays is essentially the same computation what we 

are doing right now, just the ray origin and direction should be altered. So 

the solution of this problem is a recursive function. 



The trace function gets the ray that involves its origin and direction vectors. 

First we compute the intersection that is in front of the eye and is closest to 

the eye. The already implemented solution is firstIntersect. This function 

indicates with a negative value if there is no intersection. In this case, trace 

returns with the radiance of the ambient illumination.

If some surface is seen, trace computes the contribution of the abstract light 

sources. To check the visibility of a particular light source, a ray, called 

shadow ray, is sent from the shaded point towards the light source. If this 

ray intersects an object and this intersection is closer than the light source, 

the object occludes the light source so this point is in shadow. 

If the surface is smooth and is ideally reflective, then the reflection direction 

is computed and the trace function is called recursively to compute the 

radiance of reflection direction. The same is done for the refraction direction 

if the surface is refractive.



Recursion is a dangerous operation if we cannot make sure that it stops. 

Assume, for example, that this ellipsoid is made of glass. The ray is 

refracted into the glass and there can be infinite number of reflections on the 

internal surface. So our program will surely crash with a stack overflow 

message. We should limit the recursion depth for any price. This is possible 

with depth parameter, which is incremented in each recursive call. If depth 

is greater than the limit, additional calculations are prohibited.





Object oriented decomposition identifies the objects representing the 

problem. These objects are defined in an abstract way by specifying what 

operations can be executed on these elements. 







Ray tracing processes each pixel independently, thus it may repeat 

calculations that could be reused in other pixels. Consequently, ray tracing is 

slow, it is difficult to render complex, animated scenes with ray tracing at 

high frame rates.

The goal of incremental rendering is speed and it sacrifices everything for it. 

To obtain an image quickly, it solves many problems for regions larger than 

a single pixel. This region is usually a triangle of the scene. It gets rid of 

objects that are surely not visible via clipping. Most importantly, it executes 

operations in appropriate coordinate systems where this particular operation 

is simple (recall that ray tracing does everything in world space). Moving 

object from one coordinate system to another requires transformations. As 

we cannot transform all types of geometry without modifying the type, we 

approximate all kinds of geometry with triangles. This process is called 

tessellation. 



Incremental rendering is a pipeline of operations starting at the model and 

ending on the image. Objects are defined in their reference state. First 

surfaces are approximated by triangle meshes. Then the tessellated object is 

placed in the world, setting its real size, orientation and position. Here, 

different objects, the camera and light sources meet. Ray tracing would 

solve the visibility problem here, but incremental rendering applies 

transformations to find a coordinate system when it is trivial to decide 

whether two points occlude each other, and projection is also simple. This is 

the screen coordinate system where rays are parallel with axis z and a ray 

has the pixel’s x,y coordinates. To transform the model to screen 

coordinates, first we execute the camera transformation which translates and 

rotates the scene so that the camera is in the origin and looks at the –z 

direction (the negative sign is due to the fact that we prefer right handed 

coordinate system here). In the camera coordinate system, projection rays 

go through the origin and projection is perspective. To simplify this, we 

distort the space and make rays meet in an ideal point at the end of axis z, so 

projection rays will be parallel. Clipping is executed here. Finally, we take 

into account the real resolution of the image and scale the space accordingly. 



The tessellation of a parametric surface basically means the evaluation of 

the surface equation in parameter points that are placed regularly by a grid. 

Those points form a triangle that are neighbors in parameter space. To 

obtain the shading normals, the cross product of the partial derivatives of the 

parametric equation is also computed at the sample points. 



To get the normal vector of a parametric surface, we exploit isoparametric 

lines. Suppose that we need the normal at point associated with parameters 

u*, v*. Let us keep u* fixed, but allow v to run over its domain. This r(u*,v) 

is a one-variate parametric function, which is a curve. As it always satisfies 

the surface equation, this curve is on the surface and when v=v*, this curve 

passes through the point of interest. We know that the derivative of a curve 

always tangent to the curve, so the derivative with respect to v at v* will be 

the tangent of a curve at this point, and consequently will be in the tangent 

plane.

Similarly, the derivative with respect to u will always be in the tangent 

plane. The cross product results in a vector that is perpendicular to both 

operands, so it will be the normal of the tangent plane.



Tessellation is done on the CPU with a C++ program. The tessellated 

triangle mesh is copied to the GPU and assigned to a vao (vertex array 

object). 

The general base class of triangle meshes is the Geometry that stores the vao

and the number of vertices. In its constructor, the vao is generated and is 

bound, i.e. is made active. When a Geometry is drawn, the vao is bound 

again since other vaos may become active between the construction of this 

one and its drawing. Then the vao is drawn stating that its vertices define a 

set of triangles where the first three vertices define the first triangle, the 

fourth, fifth, sixth the second triangle, etc. Note that this is not the most 

efficient way of encoding a triangle mesh since a vertex is stored as many 

times as many triangles it participates, but this is the simplest one. 

A parametric surface, called ParamSurface is a special type of Geometry, 

where Create function creates the vao. During creation we need the equation 

of the parametric surface which is different for different types (e.g. sphere, 

torus, flag, etc.). So here, we declare GenVertexData as a pure virtual 

function, which returns the position, normal and the parameter pair for a 

given parameter pair. 



Recall that we have activated the vao. Now its corresponding data stored in 

a single vbo (vertex buffer object) are generated. If the parameter space is 

decomposed to N columns and M rows, then we have N * M quads. A single 

quad is composed by two triangles, each having three vertices. Thus the 

number of vertices is N * M * 6. 

The vbo is generated and bound, then it is filled up by calling the 

GenVertexData virtual function of the vertices of the triangles. 

In the GPU, vertex shader input register #0 will get the position (3 floats), 

#1 the normal (3 floats), and #2 the u,v parameter pair (2 floats).



The construction of a parametric surface is general, the only specific thing is 

the GenVertexData. So, if we derive a Sphere class from ParamSurface, this 

virtual function should be implemented according to the equations of the 

sphere. 



Another example is the waving flag, which is a rectangle that is modulated 

by a sine wave. As we stated, the normal vector is the cross product of the 

partial derivatives.





Using the modeling transformation, the object is mapped to world 

coordinates. Recall that the transformation of the shading normals requires 

the application of the inverse-transpose of the 4x4 matrix, or if the normal is 

a part of a column vector, we should multiply it with the inverse. 

From world coordinates, we go to camera space, where the camera is at the 

origin and looks at the –z direction. The transformation between world and 

camera coordinates is a translation and a rotation. 

After camera transformation, the next step is perspective transformation, 

which distorts the objects in a way that the original perspective projection 

will be equivalent to the parallel projection of the distorted objects. This is a 

not-affine transformation, so it will not preserve the value of the fourth 

homogeneous coordinates (which has been 1 so far). 

The three transformation matrices (model, camera, perspective) can be 

concatenated, so a single composite transformation matrix takes us from the 

reference state directly to normalized screen space. 



Modeling transformation sets up the object in the virtual world. This means 

scaling to set its size, then rotation to set its orientation, and finally 

translation to place it at its position. All three transformations are affine and 

can be given as a homogeneous transformation matrix. Concatenating the 

matrices, we obtain a single modeling transformation matrix, which maps 

the object from its reference state to its actual state.  



On the CPU side, we need a mat4 class to handle matrices (on the GPU side 

we program in GLSL where this is already a built in type). We need to 

construct the 4x4 matrix and implement the matrix multiplication for 

concatenation. As we already have formulae for translation, rotation, 

scaling, the corresponding matrices can easily be given.



The definition of the camera transformation depends on the parameters of 

the camera. In computer graphics the camera is the eye position that 

represents the user in the virtual world and a window rectangle that 

represents the screen. 

It is often more intuitive to think of a virtual camera as being similar to a 

real camera. A real camera has a focus point or pin-hole, where the lens is, 

and a planar film were the image is created in a bottom-up position. In fact, 

this model is equivalent to the model of the user’s eye and the screen, just 

the user’s eye should be imagined in the lens position and the film mirrored 

onto the lens as the screen. 

So in both cases, we need to define a virtual eye position and a rectangle in 

3D. The eye position is a vector in world coordinates. The position of the 

window is defined by the location of its center, which is called lookat point 

or view reference point. We assume that the main viewing direction that is 

between the eye and the lookat positions is perpendicular to the window. To 

find the vertical direction of the window, a view up (vup) vector needs to be 

specified. If it is not exactly perpendicular to the viewing direction, then 

only its perpendicular component is used. 



The vectors defined so far specify the window plane and orientation, but not the 

size of the rectangle. To set the vertical size, the field of view angle (fov) is given. 

For the horizontal size, the aspect ratio of the vertical and horizontal window edge 

sizes should be specified.  

Objects being very close to the eye are not visible and leads to numerical 

inaccuracy. So we also set up a front clipping plane that is parallel to the window 

and ignore everything that is behind this plane. Similarly, objects that are very far 

are not visible and may lead to numerical representation problems. So we also 

introduce a back clipping plane to limit the space for the camera. 



Our goal is to transform the scene from world coordinates to screen 

coordinates, where visibility determination and projection are trivial. This 

transformation is built as a sequence of elementary transformations because 

of pedagogical reasons, but we shall execute all transformations at once, as 

a single matrix-vector multiplication. 



First we apply a transformation for the scene, including objects and the 

camera, that moves the camera to the origin and rotates it to make the main 

viewing be axis –z and the camera’s vertical direction be axis y. To find 

such transformation, we assign an orthonormal basis to the camera so that 

its first basis vector, u, is the camera’s horizontal direction, the second, v, is 

the vertical direction, and the third, w, is the opposite of the main viewing 

direction (we reverse the main viewing direction to maintain the right 

handedness of the system). 

Vector w can be obtained from the main viewing direction by a simple 

normalization. The application of normalization to get v from vup is also 

tempting, but simple normalization would not guarantee that basis vector v 

is orthogonal to basis vector w. So instead of directly computing v from vup, 

first we obtain u as a vector that is orthogonal to both w and vup. Then, v is 

computed indirectly through w and u to make it orthogonal to both of them.  

The transformation we are looking for is a translation then a rotation. The 

translation moves the eye position to the origin. The translation has a simple 

homogeneous linear transformation matrix. Having applied this translation, 

the orientation should be changed to align vector w with axis z, vector v 



with axis y, and vector u with axis x. Although this transformation is non-trivial, its 

inverse that aligns axis x with u, axis y with v, and axis z with w is straightforward. 

Its basic idea is that the rows of an affine transformation (fourth column is 

[0,0,0,1]T) are the images of the three basis vectors and the origin respectively.

So, the transformation of x,y,z axes to u,v,w is the matrix that contains u,v,w as the 

row vectors of the 3x3 minor matrix of the 4x4 transformation matrix.

As we need the inverse transformation, this matrix needs to be inverted. Such 

matrices – called orthonormal matrices – are easy to invert, since their transpose is 

their inverse.



In camera space, the camera is in the origin and the main viewing direction 

is axis –z. The normalization step distorts the space to make the viewing 

angle be equal to 90 degrees. This is a scaling along axes y and x. 

Considering scaling along axis y, before the transformation the top of the 

viewing pyramid has y coordinate bp·tg(fov/2), and we expect it to be bp.

So, y coordinates must be divided by tg(fov/2). Similarly, x coordinates must 

be divided by tg(fov/2)·asp.



Perspective transformation makes the rays meeting in the origin be parallel 

with axis z, i.e. meeting in infinity (an ideal point at the “end” of axis z).

Additionally, we expect the viewing frustum to be mapped to an axis 

aligned cube of corner points (-1,-1,-1) and (1,1,1). There are infinitely 

many solutions for this problem. However, only that solution is acceptable 

for us which maps lines to lines (and consequently triangles to triangles) 

since when objects are transformed, we wish to execute the matrix vector 

multiplication only for the vertices of the triangle mesh and not for every 

single point (there are infinite of them). Homogeneous linear 

transformations are known to map lines to lines, so if we can find a 

homogeneous linear transformation that does the job, we are done. To find 

the transformation matrix, we consider how a ray should be mapped. A ray 

can be defined by a line of explicit equation

x=-mx·z,  y=-my·z

where coordinate z is a free parameter (mx and my are the slopes of the 

line). In normalized camera space the slopes are between -1 and 1. We 

expect this line to be parallel with axis z* after the transformation (z* is the 

transformed z to resolve ambiguity), so its x and y coordinates should be 

independent of z.

As x, y must also be in [-1,1], the transformed line is



x* = mx, y* = my,

and z* is a free parameter. 

The mapping from (x,y,z) = (-mx·z, -my·z, z) to (x*,y*,z*)=(mx, my, z*) cannot be 

linear in Cartesian coordinates, but is linear (we hope) in homogeneous 

coordinates. So, we are looking for a linear mapping from [x,y,z,1] =[-mx·z, -my·z, 

z, 1]  to [x*,y*,z*,1]=[mx, my, z*, 1] . To make it simpler, we can exploit the 

homogeneous property, i.e. the represented point remains the same if all 

coordinates are multiplied by a non-zero scalar. Let this scalar be -z. So our goal is 

to find a linear mapping from [x,y,z,1] =[-mx·z, -my·z, z, 1] to to [x*,y*,z*,1]  [-

mx·z, -my·z, -z·z*, -z]. 



A homogeneous linear transformation is a 4x4 matrix, i.e. sixteen scalars, 

which need to be found. The requirement is that for arbitrary mx, my, z, 

when multiplying with [-mx·z, -my·z, z, 1], the result must be  [-mx·z, -my·z, 

-z·z*, -z]. The first two elements are kept for arbitrary mx, my, z, which is 

possible if the first two colums of the matrix are [1,0,0,0] and [0,1,0,0]. As 

mx and my do not affect the third and the fourth elements in the result, the 

corresponding matrix element must be zero. The fourth element of the result 

is –z, so the fourth column is [0,0,-1, 0]. We are left with only two unknown 

parameters alpha and beta. They can be found by considering the 

requirements that the entry point that is the intersection of the ray and the 

front clipping plane is mapped to z*=-1 and the exit point to z*=1. 



Note that the expression of z* as a function of z is not a linear (which we 

knew from the very beginning), but a reciprocal function. Recall that this 

1/x function changes quickly where x is small but will be close to constant 

where x is large. Value z* is used to determine visibility. To determine 

visibility robustly, the difference of z* for two points must be large enough 

(otherwise comparison fails due to numerical inaccuracies and number 

representation limitations). This is not the case if  is small and z is large, 

e.g. when z-bp approximately, i.e. when /z2fp/(bp-fp). If bp is much 

greater than fp, then

/z2fp/(bp-fp) 2fp/bp is very small, prohibiting to robustly distinguish 

two occluding surfaces.

Never specify fp and bp such that fp/bp is too small (e.g. less than 0.01). If 

you do, occluded surfaces will randomly show up because of numerical 

inaccuracy. This phenomenon is called z-fighting.  



Normalization and perspective transformation are usually combined and the 

composed transformation is set directly. 

It is worth noting that this transformation sets the fourth homogeneous 

coordinate to the camera coordinate depth value. It is also notable that this 

transformation maps the eye ([0,0,0,1] in homogeneous coordinates) to the 

ideal point of axis z, i.e. to [0,0, -2fp ·bp/(bp-fp), 0] [0,0, 1, 0].



Our 3D Camera class stores parameters need to define a camera, and 

implement two transformation functions. Transformation V is the view

transformation that takes a point form world space to camera space, and 

transformation P is the projection or perspective transformation that takes a 

point from camera space to normalized device space.



Transformations are set on the CPU side but are applied to points by the 

GPU. Transformations are uniform variables of the vertex shader, which are 

set from the CPU program and used by the vertex shader. We always need 

the MVP, i.e. model-view-projection transformation that is the 

concatenation of the modeling transformation and the two phases of the 

camera transformation. If illumination is also computed in world coordinate 

system, object should also be transformed there. For points, we need the 

modeling transformation M, for normal vectors its inverse. Note that normal 

vectors stand on the right side of the matrix, i.e. they form column vectors.



Clipping must be done before the homogeneous division, preferably in a 

coordinate system where it is the simplest. The optimal choice is the 

normalized device coordinates where the view frustum is a cube. However, 

clipping must be done before the homogeneous division.  This might be 

surprising but becomes clear if we consider the topology of a projective line 

and the interpretation of a line segment. A projective line is like a circle, the 

ideal point attaches the two “endpoints”. As on a circle, two points do not 

unambiguously identify an arc (there are two possible arcs), on a projective 

line, two points may define two complementer “line segments” (one of them 

looks as two half lines). To resolve this ambiguity, we specify endpoints 

with positive fourth homogeneous coordinates, and define the line segment 

as a convex combination of two endpoints. If fourth coordinates h are 

positive for both end points, then the interpolated h cannot be zero, so this 

line segment does not contain the ideal point (it is a “normal line segment”). 

Affine transformations usually do not alter the fourth homogeneous 

coordinate, so  “normal line segments” will remain normal. 

Perspective transformation may map a line segment to a line segment that 

contains the ideal point, which is clearly indicated in the different signs of 

the fourth homogeneous coordinates of the two endpoints. So, if the two h 

coordinates have the same sign, then the line segment is normal. If the two h 



coordinates have different sign, then the line segment is wrapped around (it 

contains the ideal point so we would call it two half lines and not a line segment). 

One way to solve this problem is to clip away everything that is behind the front 

clipping plane. This clipping must be executed before the homogeneous division 

since during this operation we lose the information regarding the sign of the fourth 

homogeneous coordinate.    



In Cartesian coordinates the limits of the viewing frustum are -1 and 1 in all 

three coordinates. As the clipping operation will be executed in 

homogeneous coordinates, we should find the equation of the viewing 

frustum in homogeneous coordinates. Substituting Cartesian coordinate X 

by Xh/h, etc. these equations can be obtained. To make it simpler we wish to 

multiply both sides by h. However, an inequality cannot be multiplied by an 

unknown variable since should this variable be negative, the relations must 

be negated. So we add requirement h>0 which means that the volume must 

be in front of the eye. Note that this fact is due to the specific selection of 

the perspective transformation matrix. If h is surely positive, we can safely

multiply the inequalities by h.

The collection of six inequalities defines a cube. A point is inside the cube if 

all inequalities are met. 

To make trivial things complicated, we can also imagine that instead of 

clipping on a cube, we clip onto 6 half-spaces one after the other. The 

intersection of these half-spaces is the cubical view frustum. Each half space 

is associated with a single inequality and the border plane of the half-space 

is defined by the equation where < is replaced by =. The advantage of this 



approach is that when more complex objects (like lines or polygons) are clipped, 

the fact that the vertices are outside the cube provides no information whether the 

line or polygon overlaps with the clipping region. 

However, if both endpoints of a line are outside of the half-space, then the line 

segment is totally out. If both endpoints are in, then the line segment is totally in. 

When one is out while the other is in, the intersection of the boundary plane and 

the line segment should be computed, and the outer point should be replaced by 

the intersection. 



So line clipping is executed 6 times for the half-spaces. We consider here 

just one half-space of inequality Xh < h, whose boundary is the plane of 

equation Xh = h . The half-space inequality is evaluated for both endpoints. 

If both of them are in, the line segment is completely preserved. If both of 

them are out, the line segment is completely ignored. If one is in and one is 

out, we consider the equation of the boundary plane (Xh = h ), and the 

equation of the line segment (a line segment is the convex combination of 

its two endpoints), and solve this for unknown combination parameter t.

Substituting the solution back to the equation of the line segment, we get the 

homogeneous coordinates of the intersection point. This intersection point 

replaces the endpoint that has been found outside.



What we need is solid rendering which renders filled polygons and also 

considers occlusions. Many polygons may be mapped onto the same pixel. 

We should find that polygon (and its color), which occludes the others, i.e. 

which are the closest to the eye position. This calculation is called visibility 

determination. 

We have to emphasize that visibility is determined in the screen coordinate 

system where rays are parallel with axis z and the x, y coordinates are the 

physical pixel coordinates. We made all the complicated looking 

homogeneous transformations just for this, to calculate visibility and 

projection in a coordinate system where these operations are simple. 

There are many visibility algorithms (from which we shall discuss only 1.5

:-). The literature classifies them as object space (aka object precision or 

continuous) and screen space (aka image precision or discrete). Object space 

visibility algorithms find the visible portions of triangles in the form of 

(possibly clipped and subdivided) triangles, independently of the resolution 

of the image. Screen space algorithms exploit the fact that the image has 

finite precision and determine the visibility just at finite number of points, 

usually through the centers of the pixels. Recall that ray tracing belongs to 



the category of image precision algorithms.  



First an object space method is presented, which gives only partial solution. 

Assume that the triangle mesh is the boundary of a valid 3D object! In this 

case, we can see only one side or face of each boundary polygon. The 

potentially visible face is called front-face, the other face or side where the 

polygon is ”glued” to its object is called back-face. A back-face is never 

visible since the object itself always occludes it. So, when a polygon shows 

its back-face to the camera, we can simply ignore it since we know that 

there are other polygons of the same object, which will occlude it. To help 

the determination whether a face is front or back, we use a coding scheme 

that must be set during the modeling of the geometry (or during 

tessellation). In theory, triangle or polygon vertices can be specified either in 

clock-wise or counter-clock-wise order. Let us use this ordering to indicate 

which face is glued to the object. For example, we can state that vertices 

must be specified in clock-wise order when the object is seen from outside, 

i.e. when we see the front-face of the polygon. Computing a geometric 

normal with n = (r3 - r1)(r2 - r1), the clock-wise order means that n points 

towards the viewer. As in screen coordinates the viewing rays are parallel 

with axis z, it is easy to decide whether a vector points towards the viewer, 

simply the z coordinate of n must be negative.



With back-face culling, we can get rid of the surely non-visible polygons, which 

always helps. However, front-faces may also occlude each other, which should be 

resolved by another algorithm. Still, back-face culling is worth applying, since it 

roughly halves the number of the potentially visible polygons.



And now let us meet the far most popular visibility algorithm of incremental 

image synthesis.

Ray tracing considers pixels one by one and for a single pixel, it checks 

each object for intersection while always keeping the first intersection found 

so far.

In incremental rendering, we would like to exploit the similarities of 

different points on an object (on a triangle), so instead of processing every 

pixel independently, we take an object centric approach. Let us swap the 

order of the for loops of ray tracing and take triangles one by one and for a 

single triangle, find visibility rays intersecting it, always keeping the first 

intersection in every pixel. 

As all pixels are processed simultaneously, instead of a single minimum ray 

parameter, we need to maintain as many ray parameters as pixels the 

viewport has. In screen coordinates, the ray parameter, i.e. the distance of 

the intersection, is represented by the z coordinate of the intersection point. 

Therefore, the array storing the ray parameters of the intersections is called 

the z-buffer or depth buffer. 



The z-buffer algorithm initializes the depth buffer to the largest possible value, 

since we are looking for a minimum. In screen coordinates, the maximum of z 

coordinates is 1 (the back clipping plane is here). The algorithm takes triangles 

one-by-one in an arbitrary order. A given triangle is projected onto the screen and 

rasterized, i.e. we visit those pixels that are inside the triangle’s projection (this 

step is equivalent to identifying those rays which intersect the given object).  At a 

particular pixel, the z coordinate of the point of the triangle visible in this pixel is 

computed (this is the same as ray triangle intersection), and the triangle’s z 

coordinate is compared to the z value stored in the z buffer at this pixel. If the 

triangle’s z coordinate is smaller, then the triangle point is closer to the front 

clipping plane at this pixel than any of the triangles processed so far, so the 

triangle’s color is written into the frame buffer and its z coordinate to the depth 

buffer. Thus, the frame buffer and the depth buffer always store the color and depth 

of that triangles which are visible from the triangles processed so far.  



Projected triangles are rasterized by visiting scan lines (i.e. rows of pixels) 

and determining the intersection of this horizontal line and the edges of the 

triangle. Pixels of X coordinates that are in between the X coordinates of the 

two edge intersections are those where the triangle is potentially visible. 

Pixels in this row are visited from left to right, and the z coordinate of the 

triangle point whose projection is this pixel center is calculated. This z 

coordinate is compared to the value of the depth buffer.

The first question is how the Z coordinates of the triangle points are 

computed for every pixel of coordinates X and Y. The triangle is on a plane 

so X, Y, Z satisfy the plane equation, i.e. a linear equation, so Z will also be 

a linear function of pixel coordinates X and Y. The evaluation of this linear 

function requires two multiplications and two additions, which are too much 

if we have just a few nanoseconds for this operation. To speed up the 

process, the incremental principle can be exploited. As we visit pixels in 

the order of coordinate X, when a pixel of coordinates X+1,Y is processed, 

we have the solution, Z, for the previous pixel. It is easier to compute only 

the increment than obtaining Z from scratch. Indeed, the difference between 

Z(X+1,Y) and Z(X,Y) is constant so the new depth can be obtained from the 

previous one as a single addition with a constant.



Such an incremental algorithm is easy to be implemented directly in 

hardware. A counter increments its value to generate coordinate X for every 

clock cycle. A register that stores the actual Z coordinate in fixed point, non-

integer format (note that increment a is usually not an integer). This register 

is updated with the sum of its previous value and a for every clock cycle.



The final problem is how Z increment a is calculated. One way of 

determining it is to satisfy the interpolation constraints at the three vertices. 

The other way is based on the recognition that we work with the plane 

equation where X,Y,Z coordinates are multiplied by the coordinates of the 

plane’s normal. The normal vector, in turn, can be calculated as a cross 

product of the edge vectors. 

Note that the coordinates of the screen space normal are needed not only 

here, but also in back-face culling. So, triangle set up is also responsible for 

the front-face, back-face classification. 





When a triangle point turns out to be visible (at least among the triangles 

processed so far), its color should be computed and written into the frame 

buffer. 

According to optics, the color is the radiance calculated in the direction of 

the eye, which is the sum of the contributions of abstract light sources in the 

local illumination model. For a single light source, the radiance is the light 

source intensity times the BRDF times the geometry factor. 

In incremental rendering, we try to reuse calculation done in other pixels, so 

the evaluation of this formula for different pixels shares computations.

For example, we can evaluate this illumination formula only for the three 

vertices and apply linear interpolation in between the vertices (Gouraud 

shading or per-vertex shading). 

Or, while the illumination formula is evaluated at every pixel, the vectors 

needed for the calculation are interpolated from the vectors available at the 

vertices (Phong shading or per-pixel shading). 



The radiance can be computed in world coordinates since here we have 

everything together needed by the illumination calculation, including the 

illuminated objects, light sources, and the camera. Alternatively, radiance 

can also be computed in camera space since the illumination formula 

depends on angles (e.g. between the illumination direction and the surface 

normal) and distances (in case of point light sources), and the transformation 

between world space and camera space is angle and distance preserving 

(congruence), so we obtain the same results in the two coordinate systems. 

However, radiance computation must not be postponed to later stages of the 

pipeline (e.g. normalized camera space, normalized device space, or screen 

space) since the mapping to these coordinate systems may modify angles. 

After tessellation, the object is a set of triangles with vertices and shading 

normals. These are transformed to world space (or to camera space) by 

multiplying the vertices by the modeling transform (or by the modeling and 

camera transforms) and the normals by the inverse-transport of this matrix.

In this space, the view and light directions are computed at the triangle 

vertices. If per-vertex shading is applied, these vectors are immediately 

inserted into the illumination formula obtaining the reflected radiance at the 



vertices. The triangle vertices with their computed colors are mapped to screen 

space, where rasterization takes place. The color of the internal pixels is computed 

by linear interpolation of the r,g,b values of the colors at the vertices. This is very 

similar to the interpolation of depth values. 







Gouraud shading produces satisfactory results if the surfaces are finely 

tessellated and not strongly glossy or specular. If the triangles are large and 

the material is highly specular, the highlights will be strangely deformed 

revealing the underlying triangular approximation. The problem is that 

glossy reflection is strongly non-linear, which cannot be well represented by 

linear interpolation.  



The solution to this problem is Phong shading, which interpolates only those 

variables which are smoothly changing inside a triangle. Phong shading 

interpolates the vectors (normal, view, and illumination) and evaluates the 

radiance from the interpolated vectors at each pixel. 

The triangle vertices and their shading normals are transformed to world 

space (or camera space). Here, illumination and view directions are obtained 

for each vertex. The vertices are transformed further to screen space, and the 

computed normal, illumination and view directions will follow them, but 

without any transformation (they still represent world (or camera) space 

directions). These vectors are linearly interpolated inside the triangle and for 

every pixel, the radiance is obtained. 















So far, we assumed that material properties are constant on a surface, i.e. 

inside a triangle. Texture mapping eliminates this restriction and makes 

material properties varying on the surface. 



2D texture mapping can be imagined as wallpapering. We have a wallpaper 

that defines the image or the function of a given material property. This 

image is defined in texture space as a unit rectangle. The wallpapering 

process will cover the 3D surface with this image. This usually implies the 

distortion of the texture image. To execute texturing, we have to find a 

correspondence between the 3D surface and the 2D texture space. After 

tessellation, the 3D surface is a triangle mesh, so for each triangle, we have 

to identify a 2D texture space triangle, which will be painted onto the 3D 

triangle. The definition of this correspondence is called parameterization.

A triangle can be parameterized with an affine transformation (x,y,z are 

linear functions of u, v). Screen space coordinates are obtained with 

homogeneous linear transformation from x,y,z. Thus the mapping between 

texture space and screen space is also a homogeneous linear transformation:

[Xh, Yh, h] = [u,v,1] T, where X,Y are the pixel coordinates, h = -zc, the 

negative camera space z coordinate. 

The triangle is rasterized in screen space. When a pixel is processed, texture 

coordinate pair u,v must be determined from pixel coordinates X,Y. 



The correct solution is homogeneous linear interpolation, aka perspectively

correct texture mapping, which linearly interpolates u/h, v/h, and 1/h and 

obtains u,v as two per-pixel divisions. Current GPUs do this perspectively

correct interpolation automatically. 



Rasterization visits pixels inside the projection of the triangle and maps the 

center of the pixel from screen space to texture space to look up the texture 

color. This mapping will result in a point that is in between the texel centers. 

More importantly, this mapping may be a magnification, which means that a 

single step in screen space results in a larger step in texture space, so we 

may skip texels, and the result will be a mess or noise. 

From signal processing point of view, in this case, the texture is a high 

frequency signal which is sampled too rarely, resulting in sampling artifacts.





The solution for such sampling problems is filtering. Instead of mapping just 

the center of the pixel, the complete pixel rectangle must be mapped to 

texture space at least approximately, and the average of texels in this region 

should be returned as a color. However, it would be two time consuming.

One efficient approximation is to prepare the texture not only in its original 

resolution, but also in half resolution, quarter resolution, etc. where a texel 

represents the average color of a square of the original texel. During 

rasterization, OpenGL estimates the magnification factor, and looks up the 

appropriate version of filtered, downsample texture. The collection of the 

original and downsampled textures is called mip-map. 



If we do not like to prepare our texture with reduced resolution, there is 

another simpler filtering scheme. When a pixel center is mapped to texture 

space, not only the closest texel is obtained but the four closest ones, and the 

filtered color is computed as the bi-linear interpolation of their colors. 

The filtering method can be set separately when the pixel to texture space is 

a magnification or when it is a minification.























Animation means that the properties of objects, light sources, or the camera 

change in time. Any property may change, but the most important case is 

when transformations are functions of time. If modeling transformation 

depends on time, we animate objects. If camera transformations are time 

dependent, we animate the camera. 



Animation also means that when some time elapses, the state of the virtual 

world catches up with the elapsed time. This should be happening even if the 

user does not even touch the computer. The event handling system provides 

the idle callback for this purpose. So in an idle call back, the elapsed times is 

computed, and the time interval [tstart,tend] elapsed since the last idle 

callback is simulated. As there is no upper limit for the length of the 

simulated interval, it is decomposed to dt steps that are sufficiently small. 

Here small means that time differentials can be well approximated 

differences and in dt we can suppose that the velocity and acceleration are 

constants. 

The simulation of an object is subdivided to control and animate. Control 

means the preparation for the state change, and animate means the execution 

of the state change.

If we merged the two operations together, then the simulation would depend 

on the processing order of objects.



The task of animation is the definition of the time dependence of 

transformations. We hope for realistic animations that do not contradict to the 

physical laws (acceleration is proportional to the force, linear momentum and 

angular momentum are conserved) or to the physiological laws (bones are 

connected by joints that do not allow bones to separate).



According to the Newton’s law, acceleration, i.e. the second derivative of the 

motion is proportional to the force. As forces act on some elastic mechanism, 

they cannot change abruptly. So generally, the path should have a continuous 

second derivative, i.e. of C2 type curve. 

However, if the body is really rigid (and not elastic), then force can change 

abruptly. In case of collisions very large, i.e. infinite forces may occur. So in 

special situations, the path can be of C1 or C0 type.



So we need motion curves that are generally of C2 type, occassionally of C1 

and C0. Motion is the time dependence of 4x4 homogeneous linear 

transformation matrices, having 16 elements. However, typical motions like 

translation, translation+rotation etc. Have less degrees of freedom, translation 

has 3, rotation has also 3, thus the 16 matrix elements are not independent. 

Should we interpolate them independently, the transformed object would be 

distorted. Therefore, we never specify time dependency directly for the 

transformation matrix elements. Instead, the space of independent motion 

parameters is found, the independent motion parameters are given time 

functions and are calculated first, then the matrix elements are obtained from 

the independent motion parameters. For rigid body motion, the independent 

motion parameters include the Cartesian coordinates of the translation, the 

direction vector of the rotation axis, and the angle of rotation. If the size can 

also change in time, three additional scaling parameters are added. From 

these, the modeling transformation matrix can be obtained.



Let us concentrate on the definition of the vector of independent motion 

parameters. There are various possibilities to define time functions in them.

Parametric curves use the analogy of motion, thus they can be directly used to 

describe motion. The time functions can also be given by formulae (e.g 

motion of a bullet from a canon). Keyframe animation requires the setting of 

objects at discrete points of time, called keyframes, and the inbetweening 

process finds curves that interpolate the discrete poses. Path animation 

defines the path with a motion curve also requiring that the orientation of the 

object changes according to the motion, i.e. the object follows its own „head” 

and tries to preserve a vertical direction. Physical animation does not specify 

motion directly, but provides the physical parameters like mass, friction, 

initial velocity and position etc. and solves the laws of motion to simulate 

motion. Finally motion capture animation measures the motion of a real-

characted (motion artist) and uses the measured data to control a virtual 

character. 



Let us define a clip by keyframe animation, where a ball bounces on the floor 

while a door opens and lets the ball in. At 5 points of time, the ball and the 

door a positioned. 



The discrete positions are black dots, i.e. Points to be interpolated on the yet 

unknown motion curves (y and z coordinates of the ball are shown). The 

interpolation is down with Catmull-Rom spline, so we get two functions 

interpolating the key values. The resulting animation is not realistic since it 

does not provide the bouncing effect. 



So the splines are modified by hand. We know from physics that the y 

coordinate should follow a parabola.



For path animation a single 3D curve should be drawn, which directly defines 

the position and indirectly the orientation.



The indirect orientation definition is based on the recognition that objects like 

airplanes, birds, cars, people, animals etc. follow their own „nose”, meaning 

that their nose always point into the direction of the motion, which is the 

current velocity vector. The velocity is the derivative of the path. The nose 

direction is not enough to define the full orientation, so we also specify a 

„preferred vertical” direction. This can be a fixed direction or the current 

acceleration (this option is called Frenet frames in differential geometry).

If in modeling space, the nose direction is axis z, the vertical direction is axis 

y, then the transformation matrix can be directly obtained from their 

transformed versions. 



In physical animation the forces, masses, inertia and the initial conditions are 

defined and motion is obtained simulating the physical laws:

- Linear momentum is the product of the mass and the velocity of the center 

of mass

- The time derivative of the linear momentum is the force

- Angular momentum is the product of the inertial matrix and the angular 

velocity

- The time derivative of the angular momentum is the torque

- Collision happens when objects are abount to penetrate into each other

- Upon collision, linear momentum and angular momentum are conserved, 

the kinetic energy is conserved only in case of elastic collision.  

Note that in dog school the formula of the kinetic energy of rotational motion 

is wrong. What would be the right one?





For the sake of simplicity, we consider only translational motion and point 

like objects. The force field in nature may depend on the time (e.g. wind), 

position (e.g. gravity) and the velocity (e.g. air resistance), but not on higher 

derivatives. According to the Newton’s law, the time derivative of the 

velocity is the force divided by the mass. According to the definition of the 

velocity, it is the time derivative of the position. So we have two linear 

differential equations that need to be solved. If the time is decomposed to 

small steps dt, differentials are approximated by differences, so the change of 

velocity will be the acceleration times dt, while the change of position the 

velocity time dt, since we assume that dt is small enough so acceleration and 

velocity are constants. 

This is not the case for collision,  so this should be checked and if collision 

happens, the modified velocity should be directly computed from the 

preservation laws (linear momentum and angular momentum are preserved, 

kinetic energy is preserved only for elastic collision). 

For the motion of a point like object in interval dt when we can assume that 

the velocity is constant, collision detection is equivalent to ray tracing. 

Collision response is similar to mirror like reflection if the collision is elastic, 

and we should reduce the perpendicular component if it is inelastic. 



Continuous collision detection is equivalent to ray tracing since the path of a 

point is assumed to be linear in dt.

Discrete collision detection checks whether the objects have penetrated into

each other by containment test.



In character animation, the skeleton defines the motion. Every bone in the

skeleton can introduce a rotation around the joint and a translation depending

on the length of the bone. 



When bone animation is defined, the bones and joints connecting them are 

also included in the mesh representing the skin. By default, a skin vertex will 

be transformed by the transformation of that bone which is closest to it. 

During animation, the bones are rotated in the joints and upper level bones 

naturally modify all other bones connected to it via joints. The skin is 

deformed with the resulting transformation matrices of the bones.





To examine how this can be done in OpenGL, let us consider a skin vertex 

attached to the cyan bone. When this correspondence is made, the skin vertex 

is expressed relative to its bone, i.e. in the coordinate system of the bone, 

resulting in (x,y,z). 

This point can also be expressed in the coordinate system of the parent bone 

(brown bone), just the transformation between the reference systems of the 

two bones should be executed. This is currently a translation along axis x 

with the length of the bone l. 

If the child (cyan) bone is rotated, this rotation applies to the skin in its 

coordinate system, thus rotation happens before applying the translation to 

the parent system. 

If the parent bone is rotated, the skin is translated first to the parent’s 

coordinate system, then rotation takes place.



If both bones are rotated, first child rotation, then translation to the parent’s 

system, finally rotation of the parent are executed. If the parent is also a child 

of some other node, or the parent is placed in the world, then new 

transformations must be added on the top of the hierarchy. 

Generally, a bone is a rotation transformation for its own skin and a rotation + 

translation to its children, which should be applied recursively on hierarchical 

characters. 



Our simple example is the primitive man, which consists of a head, torso, two 

independent legs and two arms. Let us consider just an arm. 

Pman swings his arm while walking. The swing rotation is defined in a 

coordinate system where the origin is the shoulder position. Then, the 

position of the shoulder with respect to Pman should be defined, i.e. the 

swinging arm should be expressed in a coordinate system having the origin in 

the center of Pman. This is a translation. Finally, Pman moves forward, i.e. its 

center is translated in the world coordinate system. So the arm is first rotated 

(T2), then translated (T1), and translated again (T0). From these 

transformations, T0 and T2 change in time, but T1 remains constant, which 

defines the physiological constraints of the body:

Pman can move its complete body and can swing its arm, but cannot remove 

its arm from its shoulder.



Only the parameters of T0 and T2 are updated. 

T2 is a periodic swinging rotation, which is defined by two key frames 

defining the two extreme angles and the rotation angle is linearly interpolated 

in between according to the elapsed time.

Note that when we step on a lower hierarchy level, the transformation matrix 

is pushed on stack, and then restored since objects on the same level should 

not interfere (arms are independent, so are legs). However, the parent affects 

all its children.  



The motion defined by constant forward moving velocity and constant 
angular speed in the hips and shoulders is not realistic since the leg will slip 
on the floor (like a break dancer) and the body will fly over the floor. 

In realistic walking one leg should stand still on the floor. In an animation, 
the point of interest for which constraints are given is called the end effector
(a term inherited from robotics). The end effector of the walking is the leg 
holding the weight of the body. 

The problem is that we define the character state from top to bottom by 
setting a sequence of transformations. This is called forward kinematics. 
The end effector at the end of the transformation sequence will be affected by 
all transformations. The task is to determine the upper level transformations 
in a way that the resulting end effector position meets the specified constraint. 
Such problems are called inverse kinematics. 

In this simple problem, we can explicitly solve the inverse kinematics 
problem since the relationship between the position of the character (forward 
and up) a hip rotation (ang) is defined by a right triangle of hypotenuse equal 
to the leg length. The end effector is always on the ground, so up directly 
specifies the distance from the floor. However, Pman walks forward, so its 
location along the forward direction is not constant. The actual forward 



position is just relative to the leg, which means that forward is updated 

incrementally. 



In case of multiple joints and bones, the correspondence between the rotation 

angles and the relative position of the origin and the end effector may become 

complicated if the rotation axes are different. However, when rotation axes 

are parallel (more or less, this is the case for hip and knee rotations), a simple 

analytic expression can be elaborated. 



























To draw the textured sphere of the planet, we can follow the general strategy 

of drawing parametric surfaces since the sphere can also be expressed in 

parametric form. The parameter space is tessellated and u,v samples are 

inserted into the parametric equations defining point on the surface. Those 

points that are neighbors in parameter space form triangles. The u,v pairs are 

used directly to pass texture coordinates to OpenGL.

Putting these together, we can implement the Planet class, which is derived 

from the general GameObject class, and implements its virtual functions 

like ControlIt, InteractIt, AnimateIt, and DrawIt. 

ControlIt and InteractIt are empty since a planet does not have to control its

path, neither does it have AI, it simply responds to physics laws.

First, we consider a simplified case when the planet does not move, it only 

rotates around its axis. The current state of the planet is represented by 

rotation angle rot_angle, which is update in AnimateIt according to 

rotation speed rot_speed and the elapsed time dt.



The DrawIt function gets the planet to be drawn by OpenGL, first setting the 

Earth’s texture (loaded probably in the constructor) as the active texture, asking for 

a rotation by rot_angle around vector (0,0,1) (which is supposed to be the  Earth’s 

axis of rotation), and finally sending the tessellated mesh to OpenGL by 

gluSphere. Note that this rotation should not be applied on other objects of the 

virtual world, so the transformation is saved in the transformation stack by 

glPushMatrix and restored after drawing by glPopMatrix.  



Earth not only rotates around its axis but also revolves around the Sun. So, 

we need two animation parameters, rotation angle and revolution angle, 

which are updated according to the rotation speed (1/day in real world) and 

the revolution speed (1/year in real world), respectively. 

Let us read the DrawIt function backwards since transformation should be 

read in this order. SphereInOrigin passes a triangular mesh approximation of 
a sphere centered in the origin to OpenGL. glRotatef(rot_angle, 

0, 0, 1) rotates the sphere around axis z. 

glTranslatef(dist, 0, 0) translates the sphere to 

distance dist from the origin where the Sun is 

supposed to be. Finally, we apply another rotation  

glRotatef(rev_angle, 0, 0, 1), around axis z, 

which keeps the Earth on the circle of radius dist 

and in the xy plane around the Sun. 

By the way, the real Earth’s rotation axis is not 

perpendicular to the plane of revolution, but is 

tilted by about 23 degrees. The addition of this 

transformation is a homework.

















































































By the end of the last century, GPUs were direct hardware implementations of the 

incremental image synthesis algorithm, or the OpenGL pipeline. Vertices arriving 

from the CPU are processed by transforming them to normalized device space 

(matrix-vector multiplication), and – if lighting is enabled – vertices and normals 

are also transformed to camera space where the diffuse+Phong-Blinn illumination 

formula is evaluated replacing the vertex color with the computed result. In 

normalized device space triangles are clipped and having transformed the vertices 

to screen space, they are rasterized while vertex properties (color and texture 

coordinates) are interpolated for every internal pixel. If texturing is enabled, the 

texture memory is addressed by interpolated texture coordinates and the 

interpolated color is replaced (or modulated) by the color fetched from the 

texture. The pixel color goes through the compositing phase, where alpha 

blending and depth testing take place, and is finally written into the frame buffer. 

OpenGL makes a clear distinction between pixels that are in the frame buffer, and 

call them pixels, and candidate pixels (pixel-wanna-be), called fragments, that 

enter the composition phase and hopes that it will pass the depth test and will be 

written into the buffer.     

Note that this already was a parallel hardware. On the one hand, it is a pipeline

since while the pixels of a triangle are rasterized and textured, the vertices of the 

subsequent triangles are transformed and illuminated. On the other hand, this is 

also parallel, since vertices and pixels are processed independently, so multiple 



transformation+lighting units and texturing units can run in parallel.

At the turn of the new century, two stages of this pipeline became programmable, the 

vertex transformation+lighting unit, which is called later as vertex shader, and the 

texturing unit, which got the name fragment shader (or pixel shader). A few years later a 

new processing element, called the geometry shader was introduced, which processes 

primitives (e.g. points, triangles or line segments) and may change the topology of these 

primitives. For example, when a point is processed, a triangle fan may be output, or a 

triangle may result in a polyline). The geometry shader has no OpenGL interpretation, it is 

a more advanced issue. More recently, new shader stages responsible for tessellation have 

been included between the vertex and the geometry shaders.

Shaders may read the texture memory and the rendering results may also be directed to 

the texture memory instead of the frame buffer (this feature is called render-to-texture). 

However, a texture may only be read only or write only at a time. In a pass, the texture of 

the render target is written, but cannot be read back (this way we can get rid of 

synchronization problems and no write cache is necessary). 

The geometry shader may also write out data that is fed back in a later pass to the vertex 

shader. 

Note that with the introduction of the programability of these stages, their interface and 

other stages remained fixed. So, for example, we cannot modify the rasterization or

clipping algorithm, and cannot say that a fragment shader will not produce fragment 

colors (and optionally depth). Note also that the processing of vertices, primitives and 

fragments is still independent, we cannot establish dependencies in a pass. 



Let us explore the GPU starting at the beginning where the CPU feds it during a 

pass and where the vertex shader processes the vertices. When, in a pass, 

glNormal, glTexcoord, or glColor functions are executed, the parameters of these 

functions will be written into the input registers of the vertex shader. The vertex 

shader is triggered with the modification of the input POSITION register 

occuring during a glVertex call. The triggered vertex shader executes its program 

for the vertex assuming that its properties are in other registers (NORMAL, 

COLOR0, TEXCOORD0, etc.). The vertex shader should write out the modified 

vertex properties into its output registers (POSITION, COLOR0, TEXCOORD0). 

If we one to simulate standard OpenGL operation, then the input position is 

multiplied by the concatenated MODELVIEW and PROJECTION 

transformations (matrix MVP), and if illumination is disabled, then the input 

COLOR0 and TEXCOORD0 registers are copied to the output COLOR0 and 

TEXCOORD0 registers, respectively. If illumination is enabled, the input 

POSITION is multiplied with the MODELVIEW (MV), the input NORMAL is 

multiplied with its inverse-transpose (MVIT), and the illumination formula is 

evaluated in camera space, writing out this result to the output COLOR0 instead 

of copying the input COLOR0. During this computation, the vertex shader needs

”global variables”, called uniform variables that are constant during the pass, like 

transformation matrices, light source and material definitions. 

When the vertices (together with vertex properties) are available for a primitive 



(when a triangle is processed, we wait for 3 vertices), the geometry shader processes the 

triangle. We shall assume its default operation, which is just the copy of its input to its 

output. 



Our first vertex shader program simulates the behavior of OpenGL when lighting 

is disabled. A vertex shader is the program run for a single vertex and it computes 

the content of the output registers (POSITION, COLOR0, TEXCOORD0, etc.) 

from the input registers, called varying input and from the state called uniform 

input. All registers are of float4 type, so they can hold four float variables. 

Registers have fixed names, but we can refer to them as arbitrary variable names. 

Registers may be declared not only float4, but also float, float2, float3, which 

means that only a part of the register is utilized. We can refer to the fields of a 

float4 variable similarly to struct field reference.

When OpenGL lighting is disabled, the input point should be transformed to 

normalized device space, which is a matrix vector multiplication with the 

modelviewproj matrix (this is passed as a uniform parameter and is the 

combination of OpenGL’s MODELVIEW and PROJECTION). In Cg, the 

multiplication of an at most 4x4 matrix and a 4 element vector is a single 

instruction (mul). The texture coordinates and the vertex color are copied. 



To simulate what OpenGL would do when the illumination is enabled, the vertex 

shader should also transform the point and the shading normal to camera space 

and compute the reflected radiance there. We need a lot of uniform parameters 

describing transformation matrices, light sources, and material properties. The 

smiley indicates that the syntax in these lines is incorrect, we should have 

repeated the type (e.g. uniform float4x4) for every variable (but there is not 

enough space on this slide). 

For the sake of simplicity, we assume that only one light source exists.

The program first transforms the point to normalized device space as in the 

previous case (this line is a part of almost all vertex shader programs). Then the 

normal vector is transformed the camera space, and then is normalized with 

normalize Cg instruction, i.e. scaled to have unit length (recall that this line 

corresponds to the enabling of the GL_NORMALIZE switch).  

The point is also transformed to camera space and expressed in Cartesian 

coordinates (cpos). Illumination direction L is computed from the position of the 

light source and the point (both of them are in camera space). Geometry factor 

costheta is computed as a dot product for diffuse reflection with the dot Cg 

function. 



As in camera space, the eye is in the origin, so the viewing direction of point cpos is –

cpos. 

Similarly, halfway vector H is computed, and the Phong-Blinn specular term is evaluated 

with a C-like power (pow) function. Emission, ambient reflection, diffuse reflection and 

specular reflection are added to get the output color. Note that + and * are evaluated as 

needed for spectra in Cg (and we also have dot and cross for vectors).   



Rasterization produces fragments that are inside the projection of the 2D triangle 

and interpolates all properties. For every fragment, the fragment shader is called 

to compute the final color from fragment properties. Note that the rasterization 

decides which fragments should be changed, and the fragment shader computes 

just the color (optionally the depth) of the given fragment, while it is NOT 

allowed to modify the target pixel (this is why we drew the arrow of the 

POSITION outside of the fragment shader). The classical function of the 

fragment shader is the texture lookup and optional modulation with the 

interpolated color. 

The computed fragment goes into the compositing phase, which applies alpha 

blending or depth buffering if enabled. 



Again, we first implement the same functions that would be enforced by the 

classic OpenGL operation. If texturing is disabled, the output fragment color is 

color interpolated from the vertex colors, which is in the input COLOR0 register. 

If texturing is enabled, the texture map is looked up with the interpolated texture 

coordinates passed in TEXCOORD0, and the fragment color is the fetched value. 

The texture id is a uniform parameter of the fragment shader, of type sampler2D. 

This name indicates that a texture object is more than just an array of texels, it 

also stores whether filtering or mipmapping is enabled and how texture 

coordinates outside the [0,1] range should be handled.

The texture fetch is done with tex2D Cg function, which returns the color that is 

already filtered if filtering is enabled.

In case of modulate texture environment, the interpolated color and the texel are 

multiplied. 



Our first Cg program is going to be the implementation of Phong shading (per-

fragment lighting), which is not available in OpenGL implementing Gouraud 

shading (per-vertex lighting).



When the GPU is programmed, we develop three programs in parallel: a CPU 

program that looks similar to a standard OpenGL application and is written, e.g. 

in C++, a Vertex shader and a Fragment shader program written in Cg. 

The rendering pass of the CPU program initiates glNormal and glVertex calls that 

will send vertices with their normals to the vertex shader. In standard OpenGL, 

Gouraud shading would calculate the point transformed to normalized device 

space and the color based on the illumination formula in the vertex shader 

program. The fragment shader would just pass the interpolated vertex color to the 

compositing phase.   



To execute Phong shading, the illumination evaluation should be transported to 

the fragment shader. On the CPU level, the program still passes normals and 

vertices. The vertex shader still transforms the point to normalized device space, 

but instead of evaluating the illumination formula, it just computes the vectors 

(normal, view and lighting) needed by the evaluation. These vectors are 

interpolated during rasterization, and the fragment shader evaluates the 

illumination formula using the interpolated vectors.

Transformations (ModelViewProjection, ModelView, ModelViewIT) are still 

needed in the vertex shader, as well as the light source position. However, 

material properties and light intensity are used in the fragment shader, so these 

will be uniform parameters there. 



We shall put together the programs according to the requirements of the Cg 

toolkit, which was the first and is the most complicated solution (a more 

comfortable alternative would be the GLSL framework). We insist on using the 

Cg toolkit, because it does not hide details, so it reveals what is going on. This 

approach clearly separates the three components, the CPU program, the vertex 

program, and the fragment program, and expects them in separate files. 

The CPU program is responsible for compiling and loading the GPU programs 

supplied in two additional files (named usually with .cg extension).

The CPU program starts with the definition of the Shader environment, which 

allocates a structure in the CPU memory where GPU related information is stored 

(similar to opening a file). GPUs are advancing, currently we have Shader Model 

1..5 class GPUs, so the compilation should also depend on what the GPU in the 

computer is capable of, which is specified during profile setting. Creating a 

vertex (or fragment) program usually means the loading the source code from a 

file into the Shader environment structure of the CPU memory and its 

compilation based on the profile setting. Loading the compiled GPU program 

means the transfer of the executable code to the GPU memory. A GPU may store 

different vertex (or fragment) programs at a time, so we should specify which is 

the active one, which is called binding (the meaning and the name are similar to 

those of texture mapping). 



The CPU can send informaiton to the shader via uniform variables, which have a 

representative on the CPU and on the GPU as well, so during their creation, the 

correspondence should also be established.  

Before starting rendering, the global variables of the shaders, i.e. the uniform variables 

should be set. Rendering is the executing a pass, including glNormal, glColor, 

glTexCoord, and glVertex calls, which write their parameters into registers. 



To access Cg functions, the Cg toolkit should be downloaded and installed. The 

declarations are in the cgGL.h file (stands for Cg for OpenGL). 

First the shaderContext structure is allocated, then the profile for the vertex 
program is set. Note that with cgGLGetLatestProfile, we find the most 

powerful profile the GPU inside the computer can offer. 

The vertex program is created with cgCreateProgramFromFile, including 

loading it from a file, stating that the name of the file is vertex.cg and it is a Cg 

source file, and compiling it in the shaderContext according to the vertex profile. 

With the additional parameters of this function, we can set the entry point of the 

vertex shader program, the default is the main function like in C. 

The compiled program is transferred to the GPU with  cgGLLoadProgram, 

and is made active with cgGLBindProgram.

To implement Phong shading, the vectors needed for the 

illumination calculation are obtained in the vertex 

shader, for which we need the light source position in 

camera space. This information is passed from the CPU 



as a uniform variable. To do that, we should define a 

CGparameter in the CPU program (we call it Lightpos), and 

connect it with a uniform parameter of the vertex program 

(which is called clightpos) using the  cgGetNamedParameter

function. 



The fragment shader is set in a similar way, first the profile is enabled, then the 

program is loaded from file and compiled, then uploaded to the GPU, and finally 

set to run with binding operation. 

The fragment shader is controlled via three uniform parameters that have 

Lightint, Shine, Kd, and Ks names on the CPU and lightint, shininess, kd, and ks 

on the GPU.



OpenGL rendering usually takes place in the Display callback. Here we set the 

transformation matrices, which are immediately uploaded to the GPU by 

OpenGL, where our own shader programs may also access them as uniform 
parameters. User defined uniform parameters are set by 

cgGLSetParameter[1..4]f, depending on how many float 

fields this parameter has. 

Finally, a conventional OpenGL pass is executed, which 

sets input register NORMAL when glNormal is called and 

POSITION when glVertex is called. Function glVertex 

also gets the vertex shader to execute its program 

once.



The supplied vertex position is transformed to normalized clipping phase as 

almost always, and additionally,  in Phong shading, the vertex shader computes 

the vectors needed for the illumination. We obtain these vectors in camera space. 

So first, the input position is also transformed to camera space using the 

MODELVIEW matrix. This is set by OpenGL, and we can connect our MVP 

uniform variable to the OpenGL state variable where this information is stored. 

Although very unlikely, this matrix multiplication may modify the fourth 

homogeneous coordinates, so after matrix-vector multiplication, the vertex 

position is expressed with Cartesian coordinates applying homogeneous division.

The normal vector is also transformed to  camera space using the inverse-

transpose of the MODELVIEW matrix (fortunately, this matrix is also in the 

OpenGL state) resulting in cnormal. The light source position in camera space is 

passed from the CPU as a uniform parameter. The difference of the light source 

position and the vertex position is the camera space illumination direction clight. 

The difference of the origin and the vertex position is the camera space viewing 

direction cview.

Vectors evaluated at the vertices should be interpolated for fragments inside the 

triangle’s projection. So these vectors should be passed to the rasterizer as vertex 



properties. Unfortunately, there is no register like “LIGHTDIR” or “VIEWDIR”  (and not 

even “NORMAL” during rasterization), but there are many, general purpose texture 

coordinate registers, so we utilize them to carry and interpolate these vectors. 



The triangle is clipped and rasterized, when fragments inside the projection are 

visited. For each fragment, the fragment shader is executed that gets the 

interpolated values of the registers (recall that in TEXCOORD0 we passed the 

cnormal from the vertex shader, so no TEXCOORD0 stores the interpolated 

normal).  

Vectors are normalized since linear interpolation make them have not unit length 

even if they were normalized before the interpolation. Halfway vector H is 

computed, then a standard diffuse + Phong-Blinn illumination formula is 

evaluated.

The result is written into the COLOR register, which will be sent to the frame 

buffer via compositing.



Note that we are not obliged to use the old diffuse + Phong-Blinn model, but 

arbitrary BRDF models can be implemented. We could even take a non-physical 

model, for example, use cartoon shading mimicking artistic rendering (aka Non-

Photorealistic Rendering). This simple shader assumes that we have just two 

shades of color (or paint), so illuminated points are painted with light green, 

points in shadow with dark green. A black silhouette is also drawn to mimick 

hand-drawn images by checking where front facing and back facing surfaces 

meet and therefore the angle between the normal and the viewing direction is 

close to 90 degrees. 





The second example of shader programming is the implementation of the shadow 

mapping algorithm. Recall that in OpenGL there is no rendered shadow since all 

surfaces are processed independently. Independent processing is still the feature 

of the programmable GPU, so shadows are still impossible in a single pass. 

However, they can be generated in multipass rendering. 

The idea of shadow mapping is that those points are in shadow that are not visible 

from the light source. So if we render the scene from the point of view of the 

source, and determine which points are visible from there, this information can be 

used in the second rendering pass, when the point of view is moved back to the 

camera.  











To support shadow mapping, tex2Dproj gets a 4 element texture address, 

executes the homogeneous division, compares the texel to the z component and 

returns to a 0/1 value indicating whether the z component is smaller than the 

stored texel value.



The edges of shadows obtained with the shadow mapping algorithm are jagged, 

which is due to the aliasing artifact. 



The real depth is available just at discrete points in the shadow map. If the light 

source has a large field of view and is far away, then a shadow map texel (called 

lixel) is mapped on a larger surface area, where only one depth value is available. 



To improve shadow map quality, a simple technique is focusing, i.e. we set the 

field of view angle of the light pass as small as possible. So first, the region 

visible from the camera is determined, then this region is focused on during light 

pass. 



The depths of points that are projected between the texel centers of the shadow 

map are not known, but can be treated as random variables. The objective is to 

estimate the probability that at this point shadowing happens and scale down the 

light intensity accordingly. 

Instead of comparing the current depth to the depth in the center of the shadow 

map pixel, the point’s depth is compared to four texels enclosing the current 

point. This results in four 0/1 values, that are bi-linearly interpolated. This 

method is called percentage closer filtering (PCF), and is automatically 

supported by the tex2Dproj function of the GPU if the bi-linear filtering is 

enabled on the depth texture. 



Comparing the current depth to a few depth values in the map, we can estimate 

this probability, using the one-tailed version of the Chebyshev inequality. The 

resulting probability may be between 0 and 1 and can be used to smooth the 

shadow boundary. This method is called variance shadow maps. 



Reflection and refraction also require the consideration of the scene as a whole and do not 

allow completely independent shading of surface points. Thus these phenomena may only 

be simulated by multi-pass rendering. Suppose that we have a reflective running man. To 

find out what may be reflected, first the scene is photographed from the center of this 

reflective object, and the result is stored in a texture. To get a complete surrounding, the 

reflective object is removed, and the scene is rendered six times from the center, selecting 

the faces of a cube as camera windows. The collection of these six images is called the 

cube map or the environment map. It is also possible to obtain this cube map in a real 

environment by taking panoramic images. 

Having obtained the cube map, the scene is rendered from the point of view of the real 

camera. Other objects are rendered in the normal way, but when the reflective object is 

processed, special vertex and fragment shaders are enabled that compute the reflection 

with the help of the prepared cube map. 

When a reflective surface point is processed, its normal vector is obtained, and the view 

direction is reflected (and/or refracted) at this point. To simulate reflection, we need to 

know the radiance coming to this point from the reflection (and/or refraction) direction. 

Unfortunately, this information is not available, what we store in the cube map is the 

radiance coming to the center (from where the photographs have been made) from the 

specified direction. However, if the distance of the shaded point and the cube map center 

is small with respect to the distance to the environment, then we can look up the 

environment map with only the reflection direction, and the fetched value is reflected 

using the Fresnel function. 



We discuss only the final rendering of the reflective object (the creation of the 

cube map and the rendering of the other objects are like a conventional rendering 

algorithm). The CPU passes the shading normals and vertices of the mesh of the 

reflective object to the vertex shader. The vertex shader also gets transformation 

matrices and the eye in world coordinates as uniform parameters. The vertex 

shader transforms the point to normalized device space for clipping and then 

rasterization, and also computes the normal and view vectors in world 

coordinates as vertex properties, which will follow the point and get linearly 

interpolated. 

The fragment shader receives the linearly interpolated world space normal and 

view vectors associated with the processed fragment, computes the reflection 

direction, fetches the incident radiance from the environment map, and multiplies 

it with the Fresnel function to obtain the reflected radiance. 



To prepare for clipping, the vertex is transformed to normalized device space 

(hPos). 

The vertex shader computes vectors in the coordinate system of the cube map. 

The cube map is usually generated by looking left/right, up/down and 

forward/backward in world space, so the cube map space has the same axes as the 

world space. 

So the vertex is transformed to world space with modeling transform M, resulting 

in x. The view direction in world space is the difference of world space eye 

position and the location of the vertex in world space. The normal vector in world 

space is obtained with the inverse-transpose of the modeling transform.

Viewing direction V and normal N are passed down the pipeline in 

TEXCOORD0 and TEXCOORD1 registers.



The reflective triangle is rasterized while the world space view direction and 

normal vector are interpolated. At a given fragment, we normalize these vectors 

and compute refraction direction T and reflection direction R. Refraction 

computation is based on the Snellius-Descartes law and is done by the refract Cg 

function taking also the reciprocal of the index of refraction into account. The 

reflection computation is based on the reflection law and is done with the reflect 

Cg function. We look up the environment map in the reflection and refraction 

directions to get the incident illumination. The Fresnel funciton is computed, and 

the reflected and refracted radiances are added up weighting them with the 

Fresnel or 1-Fresnel, respectively. 



If the cube map texels also store the distance of the visible point from the center 

of the cube map, the real reflected/refracted point can be searched for. This is 

called localization.



If we blur or concolve the environment map (cube map) with the cosine or with 

the power of cosine functions, then diffuse or glossy indirect illumination can be 

simulated. 



Ambient occlusion computes just how open the scene is around the shaded point 

and scales ambient illumination accordingly. The computation of the openness 

may be based on the content of the depth buffer. 





The second demo game is a driving simulator game. Here the car is reflective, and the 

wheels generate caustics. In this arena the goal is to push bit glass bottles that are 

reflective/refractive and also caustic generators. 

When the car moves in this corridor, we can observe the indirect diffuse/glossy 

reflections as well. 

In the other arena, gas tanks should be hit, where the explosions are generated with 

spherical billboards.









The geometry shader being between the vertex shader and the clipping using, can 

change the type or topology of the primitive. This can be used, for example, to 

execute on-the-fly subdivision smoothing, or to produce procedural geometry. 

Procedural geometry is created inside the GPU and rendered right away, so 

expensive CPU to GPU transfer can be eliminated, and the storage requirement 

can be significantly reduced (when an element is created, it is immediately 

rendered and its storage space is released). 



Nowadays, a GPU has supercomputer performance (over two teraflops), which is two 

magnitude higher than a CPU has, and the gap between GPUs and CPUs grows 

constantly. So GPUs are worth using not only for graphics but for the solution of general 

purpose computation as well. As GPUs became programmable, this is a feasible 

approach. 

So far, we assumed that the “main input” of the rendering process is the geometry 

containing a list of triangles, which is processed by the pipeline, and during the 

rasterization of this geometry, the fragments onto this geometry is projected are 

identified. Fragment processing may involve texture fetches, so the texture memory can 

be imagined as a “secondary input”. The output of rendering is always the 2D array of 

pixels, which can be the frame buffer or stored in the texture memory as well.

To make this model more appropriate for general purpose, i.e. non-graphics 

computations, we consider the texture memory, which is a 1D, 2D, or 3D array as the 

main input of the algorithm and geometry is only supplied to get the fragment shader to 

be executed for each pixel of the output image. The simplest geometry for such purpose 

is a quad that covers the full viewport. When this quad is rendered, the fragment shader

will run for each of the pixels, where an algorithm can be executed that can access the 

textures. 

Thus, interpreting the texture as an input array, the image as an output array, and the 



fragment shader as a function that is computed for every element of the output array, we 

have a parallel computer system. This system is SIMD (Single Instruction Multiple Data, 

or more precisely, Single Algorithm Multiple Data) since the same fragment shader

program will be executed in parallel computing a result on different data.

SIMD like parallelism is useful in many applications like:

1. Large matrix-vector multiplication,

2. Image filtering,

3. Differential equations on numerical grids,

4. Monte Carlo methods,

5. Etc.



In a general GPGPU application the CPU renders a full viewport quad where 

vertices are directly specified in normalized device space.

The vertex shader copies the vertex without transformation since it is already in 

normalized device space and the texture coordinate associated with this quad.

The fragment shader gets the interpolated texture coordinate which tells the 

shader which output element it computes and thus different fragment shaders 

would use different input data based on this (it would not make sense to compute 

the same result many times). The fragment shader can implement any function F 

that is based in the Input data and also on the Texture coordinate identifying the 

output index. 



An edge detection filter would compute the length of the gradient to locate pixels 

where the image changes significantly. 



The approach discussed so far became very attractive in the community that had some 

graphics background, since they could understand concepts like normalized device space, 

clipping, vertex shader, texture coordinates, etc. However, non-graphics programmers did 

not like it.

To help the development for those who are not familiar with the concepts of computer 

graphics, NVIDIA developed the CUDA (Compute Unified Device Architecture) 

framework, then a vendor independent version, called OpenCL (supported by AMD) was 

also born. These GPGPU frameworks present the GPU to the programmer as a large 

collection of general purpose processors and memory, but do not allow the access of 

fixed function elements like, depth buffering, alpha blending, clipping or rasterization. 

CUDA presents the GPU as a set of N (1..128…) independent multiprocessors, where 

each multiprocessor contains M (e.g. 8) scalar processors sharing the instruction unit 

and are connected by a fast internal shared memory. Each scalar processor has local 

registers that can store the data of many threads at a time. As scalar processors of a single 

multiprocessor share the instruction unit, they always execute the very same machine 

instruction in a SIMD like fashion. Note that this means that programs having if type 

branches where different threads may go into different directions are executed in a way 

that always all branches are executed, but in dummy branches the write operations are 

disabled. The parallel threads executed on a multiprocessors at a time in a SIMD style are 

called the warp (a word originated in the terminology of weaving). Interestingly the 

number of threads in a warp is usually larger than M, if M=8, then the typical number of 



the warp size is 32. The reason is that the execution of the scalar processors is fast, so 

while a machine instruction is fetched from the memory, it can execute four instructions. 

So, to keep it busy, each scalar processor runs four threads at a time, and executes an 

instruction on each of them (their data are stored in the registers, so switching from one 

thread to the other means just the change of the base address in the register file). Threads 

of multiple warps can be assigned to a scalar processor, which has the advantage that 

when a warp is stopped due to a slow memory access, then other warps may run during 

the memory fetch. The threads assigned to a single multiprocessor are called the block. 

A GPU has many multiprocessors so they can simultaneously execute many blocks. If the 

number of blocks is greater than the number of multiprocessors, then they are executed 

sequentially one after the other.



As an example, we present a CPU and CUDA program that adds two, large 
arrays. In the CUDA framework, CPU and GPU functions may be mixed and 
written in the same file. We can use C (or C++) for all types of functions. 
Function types can be used to declare whether a function runs on the CPU (this is 
the default), runs on the GPU but can be called from the CPU (global), or runs on 
the GPU and can only be called from the GPU. Before a conventional C compiler 
runs, a CUDA pre-processor separates functions for different devices and 
establishes the proper ways of parameter passing. 

In this example, the main function is on the CPU, which calls a parallel GPU 
function called AddVectorGPU. When this function is called, parameters can be 
passed to it, and we should also specify how many threads of this function should 
be started in total and how the threads are distributed among the multiprocessors. 
To do that, enclosed in <<< and >>>, we define the grid dimension specifying 
how many blocks are started (how many multiprocessors are assumed) and the 
block dimension describing how many threads a single multiprocessor should 
run. The blockDim is a multiple of the warp size, and 256 is a generally good 
number.

In this example, we add two N element vectors where a single thread is 
responsible for adding just a single element of the vector. So, altogether, we need 
to start N threads, which is distributed into N/blockDim blocks of blockDim
threads in a block (the program is a little more complicated, because it also 
handles the case when N/blockDim is not an integer number). 



The GPU function gets not only the passed variables, but also invisible input defining 

which multiprocessor executes this thread (blockIdx) and also the index of this thread 

among the threads running on the same multiprocessor (threadIdx). This is very similar to 

the non-visible this pointer in C++ member functions. These numbers can be used to 

compute a unique index for the thread, which defines what output this thread should 

compute.  















Eulerian solution of Navier-Stokes differential equation. To numerically solve 

differential equations, we should discretize time and space. The Eulerian 

approach discretizes space by setting up a regular grid where variables are stored. 

At the grid points, the derivatives are evaluated with finite differences. The new 

value of a grid point will be a function of the current value and the values in the 

neighboring grid point, which is like an image processing algorithm. A thread can 

update a single grid point.
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One particular equipment we work with is the NanoPet/CT of Mediso, developed 

for pharmaceutical research and therefore scans mice and rats. The gamma 

photon detector structure is shown here, which can measure several hundred 

million lines, which are distributed not only in 2D slices but forming a complex 

3D structure.

From the measurements, we should reconstruct the density of the radiotracer 

material.

30





Having made the measurements, we have the integrals of the scalar field along 

many lines. 

The question is how scalar fields can be reconstructed from its line integrals. A 

very simple approach would be backprojection, which takes a line and distributes 

the measured integral along it uniformly. As only the integral of the values is 

available, we cannot do more with a single line. Repeating the same step for all 

lines, the reconstructed value will be higher where many lines of large integrals 

meet, so we get a rough approximation of the original scalar field. Clearly, it is 

blurred and distorted approximation  since a point source will be backprojected as 

a line and the total activity after backprojection will be larger than expected as 

line cross each other. 



A standard and old method to improve this naive approach is filtered back 

projection, which examines what happens with a point source if it is measured 

and then back projected, and corrects the back projected data accordingly. Let us 

consider a point source, so the measured scalar field is modeled as a Dirac delta. 

After backprojection, lines crossing the original point source will have non-zero 

activity and the reconstructed activity distribution is denoted by function w. This 

depends just on the distance from the point source due to symmetry, and its 

integral on a circle of radius R must be proportional to R since the contribution of 

each constant activity line segment grows linearly with the length. From this, we 

can easily prove that impulse response of the naive backprojection is a function 

that decreases proportionally with the distance. 

Based on the superposition principle, the measurement and back projection of an 

arbitrary input signal can be expressed as the convolution of th input signal and 

the impulse response. In Fourier domain, convolution becomes multiplication and 

the Fourier transform, so the blurring can be compensated by dividing the Fourier 

transform of the backprojected signal with the transfer function of the system, 

which is the Fourier transform the impulse response. This requires filtering with a 

so called ramp filter, which is proportional to the absolute value of the frequency 

vector.



If the signal to noise ratio is not high enough, we get nothing but a mess of noise after 

reconstruction.

This method is fast if multi-dimensional fast Fourier transformation is applied, but it has a 

significant problem. Ramp filter is a high-pass filter, so not only the blurring is eliminated 

but high frequency noise is also amplified. 



Noise can be significant especially in emission tomography, due to the random 

nature of the measurement process and the ignored physical effects.

For example, when a positron-electron pair is annihilated, the direction of the 

generated photon pair will be random due to quantum effects. The number of hits 

in a LOR is also random and follows Poisson distribution. 

It is tempting that we believe in the theorem of large numbers and state that event 

frequency is close to the expected values, but it is a very bad idea. In practical 

PET measurements, at least when we do not wish to kill the patient, the number 

of hits in a detector is small, so we are very far from the confortable zone offered 

by the theorem of large numbers. 
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If we have a statistical model of the measurement process, that is we know the 

distribution of the hit numbers, we can make it even better since this information 

can be built into the reconstruction and can replace the blind Euclidean distance. 

The concept is called maximum likelihood estimation in statistics. Based on the 

observed or measured values, we search for an activity field that would produce 

this set of measurements with the highest probability. So again, we end up to 

solve an optimization problem but not the probability needs to be maximized. 

The typical trick is to maximize the logarithm of this probability which would not 

modify the optimum since the logarithm is a monotonous function but turns 

products to sums which makes our life much easier when derivatives are 

computed during a gradient search.















Additionally, noise can also come from the physical phenomena that are ignored 

in the simple backprojection operation. In reality, when a positron is born, it is 

not annihilated instantly but it may take an excursion in the material before it 

meets and electron. This is called positron range, which depends on the isothope 

and on the material as well. When the photon pair is generated, the two photons 

are not exactly parallel if the original impulse of the electron and positron was 

not exactly zero. The photons may get absorbed or scattered in the measured 

object, so they do not necessarily follow a straight path. Photons may also be 

scattered in the detector grid, so a different detector will absorb it not the one 

where it arrived. Finally, the absorption detection may also make random errors. 

At the end, the LOR reported by the system may be very far and may not go 

through the point where the positron was born. 
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Monte-Carlo methods, random number generation.

Practical application: rendering in computer graphics







The evaluation of high-dimensional integrals is, of course, rather time-

consuming, thus different algorithms take drastic simplifications to increase the 

computational speed.

Local illumination algorithms consider only those light paths that connect the 

light source to the eye by a single reflection and ignore indirect illumination 

completely. The resulting image cannot display mirroring and refracting objects 

and those points that are not visible from the light sources are dark.

Recursive ray-tracing, on the other hand, allow indirect illumination coming from 

the ideal reflection and refraction directions, and thus introduces ideal mirrors 

and refracting objects. 

However, this is still just a fraction of the indirect illumination, which could be 

simulated only by physically valid global illumination algorithms. Note, for 

example, that the diffuse back wall do not illuminate the spheres in the image 

obtained with ray-tracing.







Let us consider the problem of dense samples used to estimate an integral. 

Suppose, for the sake of simplicity, that the integral is one-dimensional and the 

domain is the unit interval. The simplest integration rule place samples regularly 

in the domain, evaluates the integrand at these samples, and approximates the 

area below the function by the total area these bricks. This results in the 

following sum that approximates the integral.

The error of the integration is the total area of the triangle-like objects between 

the function  curve and the bricks, which equals to the product of the

average height of the triangles, the base, and the number of triangles.

We can conclude that the error is proportional to the total change, called variation 

of the function, and inversely proportional to the number of samples.







Monte-Carlo integration can also be understood in the following way. In order to 

evaluate an integral, let us divide and multiply the integrand by a probability 

density p. Obviously, it does not make any difference. 

Looking at this formula, we can realize that this is the expected value of random 

variable f/p. According to the theorem of large numbers, expected values can be 

well approximated by averages. Thus taking M samples obtained with probability 

density p, this average will be a good estimate for the original integral.

The integration error will be proportional to the variation of f/p and inversely 

proportional to the square root of the number of samples. 



In order to reduce the error, the variation of f/p should be small, that is where the 

integrand is large, the probability density should also be large. It means that the 

sampling with this probability density will place more samples where the 

integrand is large. This concept is called importance sampling.

This figure compares a good and a bad sampling densities. In the first case the

f/p terms in the approximating average will be similar, thus the average remains 

nearly constant as we add new samples.

In the second case, the important region is sampled rarely, thus the approximating 

average contains many small values when a very large f/p value appears. The 

corresponding pixel color is dark and suddenly it becomes very bright and 

remains bright for a long time. This situation should be avoided.



According to importance sampling, when the next step is sampled, we have to 

prefer those directions from which significant light intensity can be transferred. 

This depends on two factors, on the incoming intensity and on the material 

properties that express the ratio of the outgoing and incoming intensities for two 

particular directions. 

Unfortunately, the incoming intensity is not known since we are just about to 

compute it, thus we have to take approximations. Either we can prefer those

continuation directions from which the reflection is likely, or we can continue 

towards the light sources hoping that the incoming illumination is significant 

from there. The first approach is called BDF sampling, while the second 

approach is light source sampling. 







Path connecting the light sources to the eye can be built from two directions. We can start at the 

eye and walk in the space opposite to the light generating the next direction with BRDF sampling 

and then gathering the emission of the visited points. However, if the light sources are small, then 

only a few walks have non zero contribution , which is responsible for large fluctuations of the 

average pixel colors. In order to avoid this the walk is forced to go to the light source by 

connecting the visited points to the light sources by deterministic shadow rays. 

Paths can also be obtained starting at the light sources and walking as real photons do. At the 

reflection points the continuation direction can be samples with BRDF sampling. Again, it is very  

unlikely that the walks find the eye, thus we force the walk to go to the eye by connecting the 

visited points by deterministic visibility rays.

Note that the first approach called gathering or path tracing uses BRDF sampling everywhere 

except at the last reflection towards the light sources while the second approach called shooting or 

light tracing uses BRDF sampling everywhere except for the last reflections towards the eye.

If the surfaces at these points are highly specular, or mirror like, then it is very unlikely that the 

deterministic connection finds that direction that would be preferred by BRDF sampling, which 

results in high contribution low probability samples that are regarded as bad samples. 

Light sources directly illuminating mirrors or ideal refracting objects cause caustics, thus these 

caustic effects cannot be efficiently rendered by path tracing. For example, this image was 

obtained with path tracing with 800 samples per pixel. This is quite accurate except for points 

where the illumination comes from a single reflection of the light source on a close to ideal 

mirror.

For shooting, visible mirrors and glass objects pose problems, therefore these scenes cannot be 

efficiently rendered by light tracing.









Such problematic cases can be solved by bi-directional strategies. Bi-directional 

path tracing starts a gathering  walk from the eye, and a shooting walk from the 

light source, then connects all visited points of the gathering walk to all visited 

points of the shooting walk deterministically, generating a complete family of 

paths.

For those members of this family where the deterministic shadow ray connects 

two not highly specular objects and the deterministic ray is long, the sample will 

be good, otherwise the sample will be bad.

The task is them to keep that members of the family that are good and to get rid 

of bad samples.



Let us consider a single path connecting the light source to the eye. Bi-directional 

path tracing could generate this paths by many different ways. For example, it 

can happen that the length of the  light tracing part 4 and a deterministic 

connecting takes the shooting path to the eye. Or the gathering path can be 1 ray 

long, placing the deterministic connection between the one ray long gathering 

path and the three ray long shooting path. Similarly the deterministic connection 

can appear anywhere in the walk. 

These versions correspond to the same sample thus the contributions of these 

versions are equal. However, the sampling probabilities differ.

How do we know when a particular sample is generated, then it can be 

considered as a good sample?  Recall that what we are afraid of is a high 

contribution low probability sample. Using this heuristics, we can say that the 

best version is that one which has the highest sampling probability.

It means that when a bi-directional path is built, we have to compute the 

generation probability for not only this particular version but for all other 

versions that would place the deterministic step at different positions. If the 

probability of the particular version is the maximum, that the sample is kept, 

otherwise, the contribution of the sample is not computed. This strategy is called 

maximum heuristics.



Bi-directional path tracing connects a single gathering path to a single shooting 

path to obtain complete light paths that are used in the integral quadrature.

If we could store shooting paths somehow, we could connect a single gathering 

path to all shooting paths simultaneously, thus we could gain much more samples 

for the integral quadrature. This is the basic idea of the photon map algorithm 

proposed by Jensen, which uses an approximative representation of the result of 

all shooting paths.

This algorithm consists of two phases. In the first phase a lot of shooting walks 

are generated and the photon hits of these walks are stored in an appropriate data 

structure. Then, in the second phase rays are traced from the eye and the radiance 

of the visible points are approximated from the photon hits nearby this point. 









The photon map algorithm uses those photons that are close to a point of interest, 

which limits the number of light paths obtained in a single step.

In instant radiosity, on the other hand, all photons are utilized when the 

illumination of a point is computed. 

This method also consists of two phases. In the first phase a relatively few 

shooting paths are generated and the photon hits are stored.

Then in the second phase, these photons act as virtual light sources whose 

illumination is responsible for indirect illumination.

The original version of this algorithm proposed by Keller, which is known as 

instant radiosity, the surfaces were assumed to be diffuse, thus the virtual light 

sources are also diffuse. The illumination of diffuse lights together with depth 

buffer shadows could be computed by the graphics hardware even at that time, 

which made this method really fast.





When it comes to the global illumination problem a sample is a light path 

connecting the light source to the eye, thus mutating the sample means a 

perturbation of this paths. Such perturbations should change all properties of the 

path with positive probability, as for example, the directions, the origins and the 

length as well. 

Although, if this requirement is met, then the algorithm will converge to the 

correct result no matter what kind of mutations are used, the applied perturbation 

strategy significantly affects the speed of convergence. 

For example, on specular surfaces it would be worth gradually refining the 

perturbation size, which cannot be made by the original approach, and 

consequently the original method is really efficient just on very difficult scenes. 

Moreover, if the paths are mutated, then the mutations will not be symmetric, 

which makes the formulae and the implementation more complicated. 

Considering this, the efficient implementation of this seemingly brilliant and 

simple idea is not at all trivial, and the method has not become as popular as 

expected.



The process of constructing the sampling distribution and generating the samples 

consists of the following steps:

First we find a scalar importance function that mimics the original, usually non-

scalar integrand. 

The importance is normalized to obtain a probability density, which is integrated 

to establish the cumulative probability distribution.

Finally the samples are generated from uniformly distributed pseudo or quasi 

random numbers by transforming them with the inverse of the cumulative 

distribution function.

Unfortunately, this process imposes severe requirements on the importance 

function, namely, we should know and analytically integrate it, and its integral 

should be invertible.

These requirements can only be met if the importance function is rather simple, 

which makes it impossible to mimic the integrand properly.



Metropolis sampling, on the other hand, when carries out importance sampling, 

assumes much less about the importance function.

Instead of transforming uniformly distributed numbers, Metropolis sampling 

randomly mutates the previous sample to obtain a new tentative sample, and 

decides randomly on the acceptance or rejection of the perturbed sample.

If the acceptance of the tentative sample is proportional to the importance 

degradation, then the probability of obtaining a sample in the stationary limiting 

case will be proportional to the importance function, with almost all mutation 

strategies. 

Note that Metropolis sampling does not even need the analytic form of the 

importance function, it is enough if we can point sample it, thus the importance 

sampling strategy can be much more effective, resulting in accurate images with 

just a few samples.







A sequence of pseudo random numbers unambigously defines the light path for a 

given random walk algorithm. Let us suppose, for example, that the simplest 

version of bi-directional path tracing is used. Here, with two random numbers the 

pixel is sampled, then on the visible surface another random value is needed 

whether or not the walk should be terminated according to Russian roulette. If 

not, two new random values determine the direction of the reflection direction 

and the next one is responsible for the termination.

If the eyepath is terminated, four new random values are taken to find a light 

source point and direction that initiate a shooting path. Having terminated the 

shooting path, the eye and shooting subpaths are connected, and thus a complete 

path is established, which is defined by sixteen pseudo random numbers or a 

point in a sixteen dimensional unit cube. 



Mutating in the primary sample space means that we change the point in the unit 

cube, and regenerate the path with the given random walk approach. Note that 

this can handle all types of path mutations. For example, if the mutation is 

smaller than allowed by the albedo limits used in Russian roulette, then the 

structure of the path is not altered, only the directions and the lightsource point 

are modified. However, when the mutation exceeds the albedo limits, steps are 

deleted or new steps might be introduced.



In order to attack these problems, we proposed the perturbations to be realized in 

the so called primary sample space from where normal random walks obtain the 

uniformly distributed random numbers. Since normal importance sampling 

transforms these points in a way that a given mutation will correspond to a small 

path change for high contribution paths and a larger change for low contribution 

paths, this strategy adapts to the general properties of the scene and will be 

efficient not only for difficult but also for moderately difficult lighting conditions.

Moreover, this is very simple to implement if we already have an arbitrary 

random walk implementations, such as path tracing or bi-directional path tracing. 

The main module of a random walk algorithm is responsible for path generation. 

It calls the random number generator to get uniformly distributed random 

numbers and adds the contribution of the paths to the affected pixel.

In order to implement our Metropolis Sampler, the random number generation 

should be slightly changed. The new generator will perturb the previous numbers 

instead of obtaining a completely new one. On the other hand, the contribution 

should be computed differently, since we have to remember the previous sample, 

decide on the acceptance randomly, and restore the original sample if the new 

sample is rejected. This restoration also affects the random number generator.






