

E

U V

m Liqu He Figure 1. A dual source DRIE system.

SF₆

θ

MEMS Laboratory

000.0

DODE

попг

Si

etch Si

etch

deposit 0000

DRIE Intro - Paraméterfüggések	Process	
	Increasing Parameter	C ₄ F ₈ flow
RF teljesítmény, ICP teljesítmény, nyomás, gáz összetétel, áramlási sebességek, hőmérséklet (inhibitor desorption!), mennyi a Si felület	Silicon etchrate	-
Crvo Trends	PR etchrate	-
SF ₆ flow: Increase flow to increase silicon etch rate. 0. flow: Adjust oxygen flow to control etch profile and surface much oess. Too much O, will give a positive sidewall	Oxide etchrate	-
Sope and a rough, 'grassy' surface. Too little O ₂ will give an undercut profile. ICP power: Increase power to increase silicon etch rate, beware of undercutting the mask.	Profile	(more +ve)
RF power: Reduce to improve selectivity. Pressure: Adjust pressure to controller h profile and etch rate. Increased pressure will increase etch rate and	Sidewall roughness	Ļ
sectivity, but prome is then typically more duricult to control (as it is more sensitive to O ₂ now and water temperature). Decreased pressure will give more vertical profile, but will give lower etch rate and selectivity.	Surface roughness	needs co ion densi
grassy/rougher surface. Lower temperature (<=120°C) can also give crystallographic etch features at bottom of tenches. It is essential that the wafer temperature (<=120°C) can also give crystallographic etch features at bottom of	Etchrate uniformity	↑↓
must be clean, smooth and free from particles, or resist residues. He BP: Must be high enough to ensure sufficient heat transfer from the backside of the wafer, but should not be	Profile uniformity	↑↓
so high that it causes wafer to bow or causes excessive Helium leakage (e.g. >10-15sccm leakage is usually considered too high). Also, the wafer must be well changed by the changing mechanism i.e. cannot be moved by hard when	"Bottling"	↓
clamped.	"Foot"	more pol

MEMS Laboratory												
Bosch Trends												
Process	Deposition Process					Etch Process						
Increasing Parameter	C ₄ F ₈ flow	Pressure	ICP	DC bias	Step time	SF ₆ flow	Pressure	ICP	DC bias	Step time		
Silicon etchrate	-	optimum pressure depends on ICP power	$\uparrow\uparrow$	¢↓	↓	Ť	Pressure depends on ICP pow er	$\uparrow\uparrow$	1	1		
PR etchrate	-		$\uparrow\uparrow$	↑↓	Ļ	-	$\downarrow \downarrow$	$\uparrow\uparrow$	1	1		
Oxide etchrate			$\uparrow\uparrow$	↑↓	↓	-	${\downarrow} {\downarrow}$	$\uparrow\uparrow$	Ť	1		
Profile	(more+ve)	(more +ve)	→→ (more-ve)	(more +ve)	(more +ve)	(more -ve)		→→ (more-ve)	(more +ve)	(more +ve)		
Sidewall roughness	\downarrow	\downarrow	Ť	↑↓	↑(increased 'rippling')	î	Î	Ť	Ť	↑(increased 'rippling')		
Surface roughness	needs correct dep/etch time ratio & sufficient ion density/energy				Ť	- could be related to ceramic ICP tube surface quality				↓		
Etchrate uniformity	¢↓	¢↓	1	Ŷ	¢↓	¢↓	1	Ť	1	¢↓		
Profile uniformity	¢↓	↑↓	Ť	Ť	↑↓	¢↓	¢↓	Ť	Ť	¢↓		
"Bottling"	\rightarrow	No effect	Ť	\rightarrow	\rightarrow	Ť	No effect	Ť	\rightarrow	1		
"Foot"	more polymer dep creates 'trenching' to counteract 'footing'				Î	↓	\downarrow	\downarrow	\downarrow	\downarrow		
ATA MFA MEMSLabor - Száraz marások 34												