Valószínúségszámítás

2020. október 28.

Mészáros Szabolcs

Tárgyhonlap:
cs.bme.hu/valszam

A prezentáció anyagát és az abból készült videofelvételt a tárgy hallgatói jogosultak használni, kizárólag saját célra. A felvétel másolása, videómegosztókra való feltöltése részben vagy egészben tilos, illetve csak a tantárgyfelelős előzetes engedélyével történhet.

valószínűségi vektorváltozó

Definíció: Legyenek X_{1}, \ldots, X_{n} val. változók. Ekkor az

$$
\underline{X}=\left(X_{1}, \ldots, X_{n}\right): \Omega \rightarrow \mathbb{R}^{n}
$$

függvényt valószínúségi vektorváltozónak hívjuk.
Definíció: Az \underline{X} val. vektorváltozó (együttes) eloszlásfüggvénye az

$$
\begin{aligned}
F_{\underline{X}}: \mathbb{R}^{n} & \rightarrow[0,1] \\
F_{\underline{X}}\left(x_{1}, \ldots, x_{n}\right) & =\mathbb{P}\left(X_{1}<x_{1}, \ldots, X_{n}<x_{n}\right)
\end{aligned}
$$

vektorváltozós, skalárértékű függvény.

Val. vektorváltozó, példa

Példa: Válasszunk egyenletesen véletlenszerűen egy pontot az egységnégyzetben. Jelölje (X, Y) a pont koordinátát. Mi (X, Y) együttes eloszlásfüggvénye?

$$
F_{(X, Y)}(x, y)=\mathbb{P}(X<x, Y<y)=
$$

$$
(1 \quad \text { ha } x>1, y>1
$$

Forrás: www.mathworks.com/help/stats/

$$
=\left\{\begin{array}{llr}
x & \text { ha } 0<x \leq 1, y>1 \\
y & \text { ha } 0<y \leq 1, x>1 \\
x y & \text { ha } 0<x, y \leq 1 & =\max (0, \min (1, x)) \\
\text { copulas-generate-correlated.semples. } \\
\text { h }
\end{array} \quad \cdot \max (0, \min (1, y))\right.
$$

(0) egyébkent

Val. vektorváltozó, példa

Példa: Aladárral és Bélával csetelünk.
Ha nincs meccs: egymástól független, Exp(6) eloszlás szerint válaszolnak. Ha meccs van: Aladár dupla annyi idő alatt reagál, Béla feleannyi idő alatt. Annak az esélye, hogy ma meccs van: $\frac{1}{5}$

Kérdés: mi a válaszidők együttes eloszlásfüggvénye?

$$
\begin{array}{ll}
X \text { : Aladár válaszideje } & U, V \sim \operatorname{Exp}(6) \\
Y \text { : Béla válaszideje } \\
M=\{\text { meccs van }\} & Z= \begin{cases}2 & \text { ha meccs van, } \\
1 & \text { egyébként. }\end{cases} \\
X=U \cdot Z & Y=V / Z
\end{array}
$$

Val. vektorváltozó, példa

$$
\begin{aligned}
& F_{(X, Y)}(x, y)=\mathbb{P}(X<x, Y<y)=\mathbb{P}(U \cdot Z<x, V / Z<y)= \\
&= \mathbb{P}(U \cdot Z<x, V / Z<y \mid M) \mathbb{P}(M) \\
&+\mathbb{P}(U \cdot Z<x, V / Z<y \mid \bar{M}) \mathbb{P}(\bar{M}) \\
&= \mathbb{P}(U \cdot 2<x, V / 2<y) \frac{1}{5}+\mathbb{P}(U<x, V<y) \frac{4}{5} \\
&= \mathbb{P}\left(U<\frac{x}{2}\right) \mathbb{P}(V<2 y) \frac{1}{5}+\mathbb{P}(U<x) \mathbb{P}(V<y) \frac{4}{5} \quad(x, y>0) \\
&=\left(1-e^{-6 \frac{x}{2}}\right)\left(1-e^{-6 \cdot 2 y}\right) \frac{1}{5}+\left(1-e^{-6 x}\right)\left(1-e^{-6 y}\right) \frac{4}{5}
\end{aligned}
$$

Együttes sűrűségfüggvény, def.

Definíció: Legyen $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ val. vektorváltozó. Egy

$$
f_{\underline{X}}: \mathbb{R}^{n} \rightarrow[0, \infty)
$$

függvény az \underline{X} (együttes) súrúségfüggvénye, ha
$\int_{-\infty}^{x_{n}} \ldots \int_{-\infty}^{x_{1}} f_{\underline{X}}\left(z_{1}, \ldots, z_{n}\right) \mathrm{d} z_{1} \ldots \mathrm{~d} z_{n}=F_{\underline{X}}\left(x_{1}, \ldots, x_{n}\right)$
tetszőleges $x_{1}, \ldots, x_{n} \in \mathbb{R}$ esetén.
Definíció: Az \underline{X} val. vektorváltozót folytonosnak hívjuk, ha létezik együttes sưrűségfüggvénye.

Együttes sfv., valószínűségek

Állítás: Legyen \underline{X} val. vektorvátozó, és $H \subseteq \mathbb{R}^{n}$ Jordan-mérhetó.
Ekkor

$$
\mathbb{P}(\underline{X} \in H)=\int_{H} f_{\underline{X}}(\underline{x}) \mathrm{d} \underline{x}
$$

Megjegyzések:

- Jordan-mérhető \sim van térfogata.
- Vesd össze: egy dimenziós állítás a $\mathbb{P}(a<X<b)$ mennyiségről.

Forrás: scipython.com/blog/
visualizing-the-bivariate-gaussian-distribution/

Együttes sfv., meghatározás

Állitás: Legyen $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ val. vektorváltozó. Ha \underline{X}
folytonos, akkor az alábbi függvény a sưrűségfüggvénye lesz:

$$
f_{\underline{X}}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\partial_{x_{1}} \ldots \partial_{x_{n}} F_{\underline{X}}\left(x_{1}, \ldots, x_{n}\right) & \text { ha ez létezik, } \\ 0 & \text { egyébként. }\end{cases}
$$

Megjegyzések:

- A deriválások sorrendje tetszőleges.
- Feltesszük, hogy létezik a sűrűségfüggvény (nem pedig következtetjük).

Pl. ha $\underline{X}=\left(X_{1}, X_{2}\right)$ és $X_{1}=X_{2}$ akkor \underline{X} nem folytonos.

Együttes sfv., meghatározás

Példa: Mi az esélye, hogy Aladár előbb ír vissza, mint Béla?

$$
\begin{aligned}
& F_{(X, Y)}(x, y)=\left(1-e^{-6 \frac{x}{2}}\right)\left(1-e^{-6 \cdot 2 y}\right) \frac{1}{5}+\left(1-e^{-6 x}\right)\left(1-e^{-6 y}\right) \frac{4}{5} \\
& \partial_{y} F_{(X, Y)}(x, y)=\left(1-e^{-6 \frac{x}{2}}\right) 12 e^{-12 y} \frac{1}{5}+\left(1-e^{-6 x}\right) 6 e^{-6 y} \frac{4}{5}(x, y>0)
\end{aligned}
$$

$$
f_{(X, Y)}(x, y)=\partial_{x} \partial_{y} F_{(X, Y)}(x, y)=
$$

$$
=3 e^{-3 x} \cdot 12 e^{-12 y} \frac{1}{5}+6 e^{-6 x} \cdot 6 e^{-6 y} \frac{4}{5}
$$

Együttes sfv., meghatározás

Példa: Mi az esélye, hogy Aladár előbb ír vissza, mint Béla?

$$
\begin{aligned}
& f_{(X, Y)}(x, y)=3 e^{-3 x} \cdot 12 e^{-12 y} \frac{1}{5}+6 e^{-6 x} \cdot 6 e^{-6 y} \frac{4}{5} \quad(x, y>0) \\
& \mathbb{P}(X<Y)=\int_{\{x<y\}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y= \\
& =\int_{0}^{\infty} \int_{0}^{y}\left(3 e^{-3 x} \cdot 12 e^{-12 y} \frac{1}{5}+6 e^{-6 x} \cdot 6 e^{-6 y} \frac{4}{5}\right) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{\infty}\left(\left[3 e^{-3 x}\right]_{0}^{y} \cdot 12 e^{-12 y} \frac{1}{5}+\left[6 e^{-6 x}\right]_{0}^{y} \cdot 6 e^{-6 y} \frac{4}{5}\right) \mathrm{d} x \mathrm{~d} y=0,44
\end{aligned}
$$

Együttes sfv., karakterizáció

Állítás: Legyen $f: \mathbb{R}^{n} \rightarrow[0, \infty)$. Ekkor

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}=1
$$

pontosan akkor teljesül, ha létezik \underline{X} val. vektorváltozó, aminek sû́rúségfüggvénye éppen f.
(Vesd össze: egy-változós súrúségfüggvény karakterizáció.)

Marginális eloszlás, definíció

Definíció: Ha $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ val. vektorváltozó, akkor az X_{i} eloszlását az \underline{X} i-edik marginális eloszlásának (avagy peremeloszlásának) hívjuk.

Állítás: Ha X folytonos val. vektorváltozó, akkor X_{i} is folytonos, és a sûrúségfüggvénye:

Forrás: wolfram.com,
Visualize Marginal Distributions

$$
f_{X_{i}}\left(x_{i}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{X}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{i-1} \mathrm{~d} x_{i+1} \ldots \mathrm{~d} x_{n}
$$

Marginális eloszlás, példa

Példa: Béla válaszidejének eloszlása,

$$
\begin{aligned}
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{(X, Y)}(x, y) \mathrm{d} x= \\
& =\int_{0}^{\infty}\left(3 e^{-3 x} \cdot 12 e^{-12 y} \frac{1}{5}+6 e^{-6 x} \cdot 6 e^{-6 y^{4}} \frac{5}{5}\right) \mathrm{d} x \\
& =\frac{12}{5} e^{-12 y}\left[-e^{-3 x}\right]_{0}^{\infty}+\frac{24}{5} e^{-6 y}\left[-e^{-6 x}\right]_{0}^{\infty} \\
& =\frac{12}{5} e^{-12 y}+\frac{24}{5} e^{-6 y} \quad \text { Név: kevert exponenciális eloszlás }
\end{aligned}
$$

Val. változók együttes függetlensége

Definíció: az X_{1}, \ldots, X_{n} val. változók (együttesen) függetlenek, ha az

$$
\left\{X_{1}<x_{1}\right\}, \ldots,\left\{X_{n}<x_{n}\right\}
$$

események függetlenek minden $x_{1}, \ldots, x_{n} \in \mathbb{R}$ esetén.

Megjegyzések:

- Példákat lásd még: két-változós, diszkrét esetnél.
- Tipikus példa: független kísérletek (számszerứ) eredményei.
- Intuitívan "összefüggơ" val. változókról is kiderülhet, hogy függetlenek.
- Ahogy események esetén is, függetlenek részhalmaza független.

Függetlenség, karakterizáció

Álítás: $\mathrm{Az} X_{1}, \ldots, X_{n}$ val. változók pontosan akkor függetlenek, ha

$$
F_{\left(X_{1}, \ldots, X_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \cdot \ldots \cdot F_{X_{n}}\left(x_{n}\right)
$$

tetszőleges $x_{1}, \ldots, x_{n} \in \mathbb{R}$ esetén.
Állítás: az X_{1}, \ldots, X_{n} folytonos val. változók pontosan akkor függetlenek, ha $\left(X_{1}, \ldots, X_{n}\right)$ folytonos val. vektorváltozó, és

$$
f_{\left(X_{1}, \ldots, X_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdot \ldots \cdot f_{X_{n}}\left(x_{n}\right)
$$

tetszőleges $x_{1}, \ldots, x_{n} \in \mathbb{R}$ esetén.

Függetlenség, karakterizáció

Példa: Igaz-e, hogy Aladár válaszideje független Béla válaszidejétől?

$$
\begin{aligned}
& f_{(X, Y)}(x, y)=3 e^{-3 x} \cdot 12 e^{-12 y} \frac{1}{5}+6 e^{-6 x} \cdot 6 e^{-6 y} \frac{4}{5} \\
& f_{X}(x)=\frac{3}{5} e^{-3 x}+\frac{24}{5} e^{-6 x} \quad f_{Y}(y)=\frac{12}{5} e^{-12 y}+\frac{24}{5} e^{-6 y} \\
& f_{X}(x) \cdot f_{Y}(y) \neq 3 e^{-3 x} \cdot 12 e^{-12 y} \frac{1}{5}+6 e^{-6 x} \cdot 6 e^{-6 y} \frac{4}{5}
\end{aligned}
$$

Konvolúció

Emlékeztető:

Legyenek X és Y független val. változók, amik eloszlása egyenletes az $\{1,2,3,4,5,6\}$ halmazon. Mi $X+Y$ eloszlása?

$$
\begin{aligned}
\{X+Y=7\}= & \{X=6, Y=1\} \cup\{X=5, Y=2\} \cup \\
& \cup\{X=4, Y=3\} \cup\{X=3, Y=4\} \\
& \cup\{X=2, Y=5\} \cup\{X=1, Y=6\}
\end{aligned}
$$

Konvolúció, példák

Definíció: Legyenek X és Y független val. változók.
Ekkor $X+Y$ eloszlását az X és Y konvolúciójának hívjuk.

Példák:

- A binomiális eloszlás független indikátorok összege.
- Ha a két változó Geo(p) eloszlású, akkor az összeg "negatív binomiális".
- Ha a két változó U(0;1) eloszlású, akkor az összeg "háromszög eloszlású".
- Ha több független U(0;1) eloszlású változót adunk össze: Irwin-Hall eloszlás.

Diszkrét konvolúció

Állítás: Legyenek X és Y független, diszkrét val. változók, amik értékei nemnegatív egészek. Ekkor

$$
\mathbb{P}(X+Y=k)=\sum_{i=0}^{k} \mathbb{P}(X=i) \mathbb{P}(Y=k-i) \quad(\forall k \in \mathbb{N})
$$

Megjegyzések:

- A jobb oldalon az eredeti változóknak csak az eloszlása van.
- Általánosítható egész számos esetre.
- Ha a jobb oldalra $\mathbb{P}(X=i, Y=k-i)$ kerül, akkor függetlenség nélkül is igaz.

Diszkrét konvolúció

Bizonyítás:

$$
\begin{aligned}
& \mathbb{P}(X+Y=k)=\mathbb{P}\left(\bigcup_{i+j=k}\{X=i\} \cap\{Y=j\}\right)= \\
& \quad=\sum_{i=0}^{k} \mathbb{P}(\{X=i\} \cap\{Y=k-i\}) \\
& \quad=\sum_{i=0}^{k} \mathbb{P}(X=i) \mathbb{P}(Y=k-i)
\end{aligned}
$$

Diszkrét konvolúció, példa

Példa: Legyenek X és Y független val. változók, $\operatorname{Pois}(\lambda)$ és $\operatorname{Pois}(\mu)$ eloszlásúak. Mi $X+Y$ eloszlása?
$\mathbb{P}(X+Y=k)=\sum_{i=0}^{k} \mathbb{P}(X=i) \mathbb{P}(Y=k-i)=$
$=\sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda} \frac{\mu^{k-i}}{(k-i)!} e^{-\mu}=e^{-(\lambda+\mu)} \sum_{i=0}^{k} \frac{k!}{k!\cdot i!\cdot(k-i)!} \lambda^{i} \mu^{k-i}$
$=e^{-(\lambda+\mu)} \frac{1}{k!}(\lambda+\mu)^{k} \Rightarrow X+Y \sim \operatorname{Pois}(\lambda+\mu)$

Folytonos konvolúció

Állítás: Legyenek X és Y független, folytonos val. változók. Ekkor a

$$
z \mapsto \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x
$$

függvény az $X+Y$ sû́rúségfüggvénye.

Megjegyzés:

- Ha a jobb oldalra $f_{(X, Y)}(x, z-x)$ kerül, akkor függetlenség nélkül is igaz.

Folytonos konvolúció, példa

Példa: Legyenek X és Y független, $\operatorname{Exp}(\lambda)$
eloszlású val. változók. Határozzuk meg
$X+Y$ eloszlását.

$$
\begin{aligned}
& f_{X+Y}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x=\quad(z>0) \\
& =\int_{0}^{z} \lambda e^{-\lambda x} \lambda e^{-\lambda(z-x)} \mathrm{d} x=\lambda^{2} e^{-\lambda z} \int_{0}^{z} 1 \mathrm{~d} x
\end{aligned}
$$

$$
=\lambda^{2} e^{-\lambda z} z \Rightarrow \text { nem exponenciális }
$$

Érdekesség: végtelenül osztható

Megfigyelés:

- Poisson-eloszlású val. változók felírhatók tetszőleges, véges sok független, Poisson-eloszlású konvolúciójaként.
- Nem-nyilvánvaló, de egy geometriai eloszlású val. változó is felírható tetszőleges, véges sok független, azonos eloszlású konvolúciójaként.

Igaz-e ez mindig? Nem, az egyenletes eloszlás ellenpélda.
Név: végtelenül osztható.
Ez egy nevezetes eloszlás-osztály: csak ezek állnak elő független val. változók összegeinek határeloszlásaiként.

Köszönöm a figyelmet!

