1. Average velocity equals the algebraic mean of the initial and final velocities.
2. The radius of curvature of the trajectory of a particle is entirely determined by the speed and the centripetal acceleration of the particle.
3. In a simple pendulum the net force acting on the particle always points tangentially to the circular path of the particle.
4. For conservative forces the work done by the force around any closed loop is zero.
5. The direction of the force of kinetic friction is always opposite that of the acceleration.
6. Potential energy can have negative values.
7. Due to the Coriolis force, a bullet fired vertically from the Equator is deflected towards the west.
8. The Euler force is always zero when the object is not moving in a rotating coordinate system.
9. The kinetic energy of a system of particles is independent of the work done by internal forces.
10. The torque vector is perpendicular to the force vector.
11. The angular momentum of a body is constant if the vectorial sum of the forces acting on the body is zero.
12. If an ice-skater pulls his arms in close to his body, while performing a spin, his angular momentum will increase.
13. The amplitude of harmonic oscillations depends on the initial displacement and the initial velocity.
14. In damped oscillations the sum of the kinetic and potential energies is constant in time.
15. Forced oscillation: in case of resonance, the driving force and the body's velocity are in phase.
16. The wave function $Y(x, t)=3 \cdot \sin (-5 t-6 x)$ describes a wave propagating in the $(-x)$ direction.
17. When we pluck a string on a violin, we generate longitudinal waves in the string.
18. The Doppler effect has the same mathematical formula for sound and electromagnetic waves.
19. In an ideal gas, temperature is proportional to volume.
20. Temperature is an extensive state variable.
21. A stone is thrown with an initial speed of $10 \mathrm{~m} / \mathrm{s}$, at an angle of 30° with respect to the horizontal. Find the radius of curvature of at the initial point of its parabolic path.
(a) 6.4 m
(b) 8.2 m
(c) 11.5 m
(d) none
22. A particle is moving along a straight line with an acceleration of $a(t)=10-3 t\left[\mathrm{~m} / \mathrm{s}^{2}\right]$. At $t=0$ the particle is at rest. Find the displacement of the particle during the first 2 seconds.
(a) 4.5 m
(b) 9 m
(c) 16 m
(d) none
23. The position vector of a particle is $\mathbf{r}(\mathrm{t})=3 \mathrm{t}^{3} \mathbf{e}_{\mathbf{x}}+2 \mathrm{t}^{2} \mathbf{e}_{\mathbf{y}}-5 \mathrm{t} \mathbf{e}_{\mathbf{z}}[\mathrm{m}]$. Find the magnitude of its velocity at t $=2 \mathrm{~s}$.
(a) $37.2 \mathrm{~m} / \mathrm{s}$
(b) $56.3 \mathrm{~m} / \mathrm{s}$
(c) $73.1 \mathrm{~m} / \mathrm{s}$
(d) none
24. A person is lifting a 2 kg mass vertically with constant force. During a displacement of 2 m , the work done by the person is 100 J . Find the acceleration of the mass.
(a) $10 \mathrm{~m} / \mathrm{s}^{2}$
(b) $15 \mathrm{~m} / \mathrm{s}^{2}$
(c) $20 \mathrm{~m} / \mathrm{s}^{2}$
(d) none
25. How long does it take the 50 kW engine of a car to accelerate the vehicle from $54 \mathrm{~km} / \mathrm{h}$ to $90 \mathrm{~km} / \mathrm{h}$ on a horizontal road, neglecting air resistance? The mass of the car is 1000 kg .
(a) 3 s
(b) 4 s
(c) 8 s
(d) none
26. A ball with mass 0.1 kg falls from a height of 1.25 m . After colliding with the ground it bounces back to a height of 0.8 m . Find the average force exerted by the ground on the ball, if the collision lasted 0.1 s .
(a) 10 N
(b) 17 N
(c) 23 N
(d) none
27. A mass of 1 kg is attached to a 1 m long string and is released from rest when the string is horizontal. Find the angle between the string and the vertical when the tension in the string is 20 N .
(a) 42°
(b) 48°
(c) 60°
(d) none
28. A particle of mass m at a latitude of $30^{\circ} \mathrm{N}$ is moving towards the North with a velocity v. Find the magnitude and direction of the Coriolis force acting on the particle.
(a) $2 \mathrm{mv} \omega$, West
(b) mve, North
(c) mv ω, East
(d) none
29. A solid cylinder is rolling down a slope with an inclination angle of 30°. Find the acceleration of the center of mass of the cylinder.
(a) $g / 6$
(b) $g / 3$
(c) $g / 2$
(d) none
30. Find the instantaneous power of the torque $\tau=2 \mathbf{e}_{\mathbf{x}}+7 \mathbf{e}_{\mathbf{y}}-5 \mathbf{e}_{\mathbf{z}}$ at the angular velocity $\omega=3 \mathbf{e}_{\mathbf{x}}-4 \mathbf{e}_{\mathbf{z}}$.
(a) 9 W
(b) 26 W
(c) 33 W
(d) none
31. Find the period of a 33.6 cm long rod, if it is swaying around an axis that is at a distance of 8.4 cm from the top end of the rod.
(a) 0.23 s
(b) 0.5 s
(c) 0.88 s
(d) none
32. A 0.1 kg particle is attached to a spring having a spring constant of $2.5 \mathrm{~N} / \mathrm{m}$. At $\mathrm{t}=0$ the displacement of the particle is -0.15 m and its velocity is $3 \mathrm{~m} / \mathrm{s}$. Find the amplitude of the oscillation.
(a) 0.2 m
(b) 0.25 m
(c) 0.3 m
(d) none
33. Two particles, both having a mass of 1 kg , are hung vertically on a spring having a spring constant of $500 \mathrm{~N} / \mathrm{m}$. One of the particles is suddenly cut off from the spring. Find the amplitude of the oscillations of the second particle.
(a) 1 cm
(b) 2 cm
(c) 4 cm
(d) none
34. A 1 kg particle is attached to a spring with a spring constant of $5 \mathrm{~N} / \mathrm{m}$. The particle is submerged in a liquid. Find the period of oscillation if in every 3 periods the amplitude decreases by a factor of e^{6}.
(a) 2.95 s
(b) 3.76 s
(c) 7.68 s
(d) none
35. A sound wave having a frequency 1000 Hz propagates with a speed of $330 \mathrm{~m} / \mathrm{s}$. Find the phase difference between the oscillation of an air molecule 1 m from the source at $\mathrm{t}=2 \mathrm{~s}$, and another air molecule 10 m from the source at $\mathrm{t}=2.028 \mathrm{~s}$.
(a) 0.044
(b) 0.45
(c) 4.57
(d) none
36. A tube of length 30 cm is closed at one end. Find the frequency of the 2 nd harmonic that can be generated, if the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
(a) 550 Hz
(b) 700 Hz
(c) 850 Hz
(d) none
37. Two waves having the same amplitude are added coherently. The resultant intensity is the same as the intensity of each component wave. Find the phase difference between the two component waves.
(a) 45°
(b) 90°
(c) 120°
(d) none
38. A vehicle which emits a sound of constant frequency passes an observer with a speed v. The ratio between the highest and lowest observed frequencies (corresponding to the approaching and receding vehicle, respectively) is 1.2 . Find the speed of the vehicle. (The speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$.)
(a) $20 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) none
39. The side of a cube is 80 cm . When the temperature of the cube is raised from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, its volume increases by $307 \mathrm{~cm}^{3}$. Find the linear coefficient of thermal expansion.
(a) $10^{-6} /{ }^{\circ} \mathrm{C}$
(b) $10^{-5} /{ }^{\circ} \mathrm{C}$
(c) $2 \cdot 10^{-5} /{ }^{\circ} \mathrm{C}$
(d) none
40. There is 0.8 kg hydrogen $(\mathrm{M}=2 \mathrm{~g})$ and 1.6 kg oxygen $(\mathrm{M}=32 \mathrm{~g})$ in a 1000 liter balloon at 300 K . Find the pressure of the gas mixture.
(a) 1123 kPa
(b) 846 kPa
(c) 324 kPa
(d) none
