

A multimédia technológiák alapjai

JPEG 2000

JPEG 2000 Image Compression

- Defines a new image-coding scheme
- Using state-of-the-art compression techniques
- Based on wavelet technology
- Provides both lossless and lossy compression in a single compression architecture
- It's useful for many diverse applications,
- including Internet image distribution,
- and medical imaging.

(ref: http://www.analog.com/library/analogDialogue/archives/38-09/jpeg2000.pdf)

JPEG 2000 applications

JPEG VS JPEG 2000

JPEG	JPEG 2000
For natural imagery	For computer generated imagery
Discrete Cosine Transform	Discrete Wavelet Transform
File Extensions: .jpeg .jfif .jpg .jpe	File extention: .jp2 .jpx .jpf .mj2
Lossy coding of continuous tone still images.	Lossless compression mode (identical to original image).
Currently applicable to most of applications	Currently NOT widely used

JPEG 2000 ENCODE

ORIGINAL TILE TO: PRECINCT 0 OF HL1 HL2 LL2HL1 i de WAVELET 10 TRANSFORM INTO LH2 HH2 SUBBANDS HL1, HH1, LH1, LL2, HL2, HH2, LH2 cb0 cb1 Ξ. LH1 HH1 cb2 cb4 cb3 cb5 PRECINCT 0 OF LH1 PRECINCT 0 OF HH1

WAVELET COEFFICIENT DATA IS ARRANGED INTO THE JPEG 2000 CODESTREAM

	TILEO																							
	RESOLUTION													R1										
	LAYERO								u									LO						
	Y СЬ					Cr				Y		СЬ				Cr			Y			СЬ		
0	PRECINCTO	Pr1	Pr2	Pr0	Pr1	Pr2	Pr0	Pr1	Pr2	Pr0	Pr1	Pr2	Pr0	Pr1	Pr2	Pr0	Pr1	Pr2	Pr0	Pr1	Pr2	Pr0	Pr1	Pr2
	PACKET 0					CKE.	F 1			PACKET 2			PACKET 3						PACKET 4					
	PACKET FOR PACKET 0			DAT COI 0, S HL1	IA FO DEBI UBB	OR DATA LOCK CODE SAND 1. SUE HL1			FOR BLOG BBAN	ж D	DATA FOR CODEBLOCK 2. SUBBAND LH1			DATA FOR CODEBLOCK 3. SUBBAND				DATA FOR CODEBLOCK 4. SUBBAND			DATA FOR CODEBLOCK 5, SUBBAND HH1		CK ID	

JPEG VS JPEG 2000

Original

JPEG 1:64

Wavelet Transform vs. Fourier Transform

Fourier transform:

- Basis functions cover the entire signal range,
- varying in frequency only

Wavelet transform:

- Basis functions vary in frequency
- as well as spatial extend
- High frequency basis covers a smaller area
- Low frequency basis covers a larger area
- Non-uniform partition of frequency range
- and spatial range

Haar Wavelet – Analysis (illustration)

Computing a two-scale fast wavelet transform of sequence {1, 4, -3, 0} using Haar scaling and wavelet vector

1 Stage Decomposition

HL

ΗН

LH

LL

3D Hierarchy

ORIGINAL 128, 129, 125, 64, 65,

TRANSFORM COEFFICIENTS 4123, -12.4, 867, 4.5,

3D Hierarchy

LL1	HL ₁			LL ₃ HL ₃ LH ₃ HH ₃ HL ₂ LH ₂ HH ₂		. HL ₁	
LH1	HH1			LF	41	ΗH1	

4. The subband labeling scheme for a one-level, 2-D wavelet transform. 6. The subband labeling scheme for a three-level, 2-D wavelet transform.

3D Hierarchy

