1. Average velocity equals the algebraic mean of the initial and final velocities.
2. The radius of curvature of the trajectory of a particle is entirely determined by the speed and the centripetal acceleration of the particle.
3. In a simple pendulum the net force acting on the particle always points tangentially to the circular path of the particle.
4. For conservative forces the work done by the force around any closed loop is zero.
5. The direction of the force of kinetic friction is always opposite that of the acceleration.
6. Potential energy can have negative values.
7. Due to the Coriolis force, a bullet fired vertically from the Equator is deflected towards the west.
8. The Euler force is always zero when the object is not moving in a rotating coordinate system.
9. The kinetic energy of a system of particles is independent of the work done by internal forces.
10. The torque vector is perpendicular to the force vector.
11. The angular momentum of a body is constant if the vectorial sum of the forces acting on the body is zero.
12. If an ice-skater pulls his arms in close to his body, while performing a spin, his angular momentum will increase.
13. The amplitude of harmonic oscillations depends on the initial displacement and the initial velocity.
14. In damped oscillations the sum of the kinetic and potential energies is constant in time.
15. Forced oscillation: in case of resonance, the driving force and the body's velocity are in phase.
16. The wave function $Y(x, t)=3 \cdot \sin (-5 t-6 x)$ describes a wave propagating in the $(-x)$ direction.
17. When we pluck a string on a violin, we generate longitudinal waves in the string.
18. The Doppler effect has the same mathematical formula for sound and electromagnetic waves.
19. In an ideal gas, temperature is proportional to volume.
20. Temperature is an extensive state variable.
21. The efficiency of a Carnot-engine depends on the type of gas used.
22. A heat pump can expel much larger useful energy than the amount of invested work.
23. Heat never flows from a substance of low temperature to a substance of high temperature.
24. If a block of hot iron is placed into cold water, the entropy of the block of iron decreases.
25. Electric field lines originate on negative charges.
26. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.
27. Electric flux is a scalar quantity.
28. In electrostatics the charge density is constant on the surface of a metal.
29. In electrostatics the surface of a metal is an equipotential surface.
30. In electrostatics the electric potential is constant inside a sphere.
--
31. A stone is thrown with an initial speed of $10 \mathrm{~m} / \mathrm{s}$, at an angle of 30° with respect to the horizontal. Find the radius of curvature of at the initial point of its parabolic path.
(a) 6.4 m
(b) 8.2 m
(c) 11.5 m
(d) none
32. A particle is moving along a straight line with an acceleration of $a(t)=10-3 t\left[m / s^{2}\right]$. At $t=0$ the particle is at rest. Find the displacement of the particle during the first 2 seconds.
(a) 4.5 m
(b) 9 m
(c) 16 m
(d) none
33. The position vector of a particle is $\mathbf{r}(\mathrm{t})=3 \mathrm{t}^{3} \mathbf{e}_{\mathbf{x}}+2 \mathrm{t}^{2} \mathbf{e}_{\mathbf{y}}-5 \mathrm{t} \mathbf{e}_{\mathbf{z}}[\mathrm{m}]$. Find the magnitude of its velocity at t $=2 \mathrm{~s}$.
(a) $37.2 \mathrm{~m} / \mathrm{s}$
(b) $56.3 \mathrm{~m} / \mathrm{s}$
(c) $73.1 \mathrm{~m} / \mathrm{s}$
(d) none
34. A person is lifting a 2 kg mass vertically with constant force. During a displacement of 2 m , the work done by the person is 100 J . Find the acceleration of the mass.
(a) $10 \mathrm{~m} / \mathrm{s}^{2}$
(b) $15 \mathrm{~m} / \mathrm{s}^{2}$
(c) $20 \mathrm{~m} / \mathrm{s}^{2}$
(d) none
35. How long does it take the 50 kW engine of a car to accelerate the vehicle from $54 \mathrm{~km} / \mathrm{h}$ to $90 \mathrm{~km} / \mathrm{h}$ on a horizontal road, neglecting air resistance? The mass of the car is 1000 kg .
(a) 3 s
(b) 4 s
(c) 8 s
(d) none
36. A ball with mass 0.1 kg falls from a height of 1.25 m . After colliding with the ground it bounces back to a height of 0.8 m . Find the average force exerted by the ground on the ball, if the collision lasted 0.1 s .
(a) 10 N
(b) 17 N
(c) 23 N
(d) none
37. A mass of 1 kg is attached to a 1 m long string and is released from rest when the string is horizontal. Find the angle between the string and the vertical when the tension in the string is 20 N .
(a) 42°
(b) 48°
(c) 60°
(d) none
38. A particle of mass m at a latitude of $30^{\circ} \mathrm{N}$ is moving towards the North with a velocity v. Find the magnitude and direction of the Coriolis force acting on the particle.
(a) $2 \mathrm{mv} \omega$, West
(b) mv ω, North
(c) mv ω, East
(d) none
39. A solid cylinder is rolling down a slope with an inclination angle of 30°. Find the acceleration of the center of mass of the cylinder.
(a) $g / 6$
(b) $g / 3$
(c) $g / 2$
(d) none
40. Find the instantaneous power of the torque $\tau=2 \mathbf{e}_{x}+7 \mathbf{e}_{y}-5 \mathbf{e}_{z}$ at the angular velocity $\omega=3 \mathbf{e}_{x}-4 \mathbf{e}_{\mathbf{z}}$.
(a) 9 W
(b) 26 W
(c) 33 W
(d) none
41. Find the period of a 33.6 cm long rod, if it is swaying around an axis that is at a distance of 8.4 cm from the top end of the rod.
(a) 0.23 s
(b) 0.5 s
(c) 0.88 s
(d) none
42. A 0.1 kg particle is attached to a spring having a spring constant of $2.5 \mathrm{~N} / \mathrm{m}$. At $\mathrm{t}=0$ the displacement of the particle is -0.15 m and its velocity is $3 \mathrm{~m} / \mathrm{s}$. Find the amplitude of the oscillation.
(a) 0.2 m
(b) 0.25 m
(c) 0.3 m
(d) none
43. Two particles, both having a mass of 1 kg , are hung vertically on a spring having a spring constant of $500 \mathrm{~N} / \mathrm{m}$. One of the particles is suddenly cut off from the spring. Find the amplitude of the oscillations of the second particle.
(a) 1 cm
(b) 2 cm
(c) 4 cm
(d) none
44. A 1 kg particle is attached to a spring with a spring constant of $5 \mathrm{~N} / \mathrm{m}$. The particle is submerged in a liquid. Find the period of oscillation if in every 3 periods the amplitude decreases by a factor of e^{6}.
(a) 2.95 s
(b) 3.76 s
(c) 7.68 s
(d) none
45. A sound wave having a frequency 1000 Hz propagates with a speed of $330 \mathrm{~m} / \mathrm{s}$. Find the phase difference between the oscillation of an air molecule 1 m from the source at $\mathrm{t}=2 \mathrm{~s}$, and another air molecule 10 m from the source at $\mathrm{t}=2.028 \mathrm{~s}$.
(a) 0.044
(b) 0.45
(c) 4.57
(d) none
46. A tube of length 30 cm is closed at one end. Find the frequency of the 2 nd harmonic that can be generated, if the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
(a) 550 Hz
(b) 700 Hz
(c) 850 Hz
(d) none
47. Two waves having the same amplitude are added coherently. The resultant intensity is the same as the intensity of each component wave. Find the phase difference between the two component waves.
(a) 45°
(b) 90°
(c) 120°
(d) none
48. A vehicle which emits a sound of constant frequency passes an observer with a speed v. The ratio between the highest and lowest observed frequencies (corresponding to the approaching and receding vehicle, respectively) is 1.2 . Find the speed of the vehicle. (The speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$.)
(a) $20 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) none
49. The side of a cube is 80 cm . When the temperature of the cube is raised from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, its volume increases by $307 \mathrm{~cm}^{3}$. Find the linear coefficient of thermal expansion.
(a) $10^{-6} /{ }^{\circ} \mathrm{C}$
(b) $10^{-5} /{ }^{\circ} \mathrm{C}$
(c) $2 \cdot 10^{-5} /{ }^{\circ} \mathrm{C}$
(d) none
50. There is 0.8 kg hydrogen $(\mathrm{M}=2 \mathrm{~g})$ and 1.6 kg oxygen $(\mathrm{M}=32 \mathrm{~g})$ in a 1000 liter balloon at 300 K . Find the pressure of the gas mixture.
(a) 1123 kPa
(b) 846 kPa
(c) 324 kPa
(d) none
51. A work of 258J is applied to compress 2 moles of He gas adiabatically. Find the change in its temperature.
(a) $0^{\circ} \mathrm{C}$
(b) $10^{\circ} \mathrm{C}$
(c) $20^{\circ} \mathrm{C}$
(d) none
52. The pressure of 1 liter of O_{2} gas $(\mathrm{f}=5)$ is increased isovolumetrically from 100 kPa to 300 kPa . Find the increase in internal energy.
(a) 150 J
(b) 370 J
(c) 500 J
(d) none
53. A Carnot engine operates between two heat reservoirs, with temperatures of 300 K and 400 K , respectively. The engine absorbes a heat of 600J from the hot heat reservoir. Find the work done by the engine.
(a) 130 J
(b) 150 J
(c) 180 J
(d) none
54. A Carnot engine operates between two heat reservoirs, with temperatures of $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively. The engine does a work of 1000J in one cycle. Find the heat given up to the cold heat reservoir in one cycle.
(a) 2730 J
(b) 1350 J
(c) 870 J
(d) none
55. One mole of ideal gas undergoes isothermal expansion from a pressure of $10^{4} \mathrm{~Pa}$ to a pressure of 10 Pa . Find the change in entropy.
(a) $57 \mathrm{~J} / \mathrm{K}$
(b) $606 \mathrm{~J} / \mathrm{K}$
(c) $723 \mathrm{~J} / \mathrm{K}$
(d) none
56. A system consists of 10 particles. Find the thermodynamic probability that belongs to the macrostate 021025 .
(a) 0.73
(b) 7560
(c) 12840
(d) none
57. An uncharged plastic sphere has a radius of 10 cm . We place a point charge of -1 mC at a distance of 1 m from the center of the sphere. Find the total flux of the electric field over the surface of the plastic sphere.
(a) 1 Vm
(b) 0
(c) -2 Vm
(d) none
58. A charged particle of 16 nC is placed to the North of point P, at a distance of 2 m . Another charged particle, of -45 nC , is placed to the East of P , at a distance of 3 m . Find the electric field at point P .
(a) $58 \mathrm{~V} / \mathrm{m}$
(b) $16.4 \mathrm{~V} / \mathrm{m}$
(c) $8.8 \mathrm{~V} / \mathrm{m}$
(d) none
59. A long cylinder has a radius of 10 cm . Find the surface charge density on the surface of the cylinder, if the electric field at a distance of 1 m from the cylinder's axis is $10 \mathrm{kV} / \mathrm{m}$.
(a) $44.3 \mathrm{nC} / \mathrm{m}^{2}$
(b) $886 \mathrm{nC} / \mathrm{m}^{2}$
(c) $4.43 \mu \mathrm{C} / \mathrm{m}^{2}$
(d) none
60. A cube whose edges are 7 cm long is uniformly charged with a volume charge density of $60 \mathrm{nC} / \mathrm{m}^{3}$. Calculate the flux of the electric field over one side of the cube.
(a) $1523 \mathrm{Nm}^{2} / \mathrm{C}$
(b) $0.387 \mathrm{Nm}^{2} / \mathrm{C}$
(c) $3.42 \mathrm{Nm}^{2} / \mathrm{C}$
(d) none
61. Charge is distributed uniformly over the length of a circular metallic loop. The loop has a radius of 10 cm . Find the charge on the loop, if the electric potential at the center of the loop is 900 V relative to a point at infinity.
(a) 5 nC
(b) 10 nC
(c) 1 mC
(d) none
--
62. Write Newton's laws.
63. What is the work-energy theorem? Derive the work-energy theorem in 1D using Newton's laws.
64. Derive the expressions for the 1 st and 2 nd cosmic speeds at the surface of Earth.
65. Describe the precessional motion of a gyroscope, and calculate its angular speed.
66. What are the effects of damping in an oscillatory motion?
67. Write the linear wave equation in 1 D and show that it is satisfied by a sinusoidal plane wave.
68. Derive the formula for acoustic Doppler effect using a spacetime diagram. theoretically?
69. Draw $\mathrm{F}(\mathrm{v})$ Maxwell-Boltzmann velocity distribution curves belonging to different temperature values. What is the physical meaning of $F(v)$? Draw the most probable speed, the average speed and the root-mean-square speed in the diagram.
70. What does the „equipartition of energy" say?
71. What is Dulong-Petit's empirical law for the molar heat of solids and how can it be justified theoretically?
72. What is latent heat? What is its SI unit?
73. Write at least two forms of the 2nd law of thermodynamics.
74. Using Coulomb's law, derive the expression for the electric field of a uniformly charged thin circular ring, along its symmetry axis at a distance d from its center. (The ring has a radius r.)
75. Using Gauss's law, derive the expression for the electric field of a uniformly charged infinite straight line, at a distance d from the line.
