Same Same					Neptur	i-kód:	
1. (4 p)	2. (3 p)	3. (4 p)	4. (4p)	5. (3p)	6. (4 p)	Σ	2
1822 47							S. Lines

1. a) Mekkora erősítéshibát visel el egy 64QAM jel?

b) Mekkora fázishibát visel el egy 64QAM jel? (Elegendő trigonometrikus alakban, de konkrét számértékekkel megadni.)

c) Mi az előnye – és mi a hátránya a 16QAM moduláció használatának a 64QAM használatával szemben?

d) Mekkora a bitsebessége egy 100kBaud szimbólumsebességű, 64QAM-et használó kapcsolatnak?

2. Egy hangfelvételt 16 biten, 24 kHz-es mintavételi frekvenciával digitalizálunk, 8 kHz-es aluláteresztő előszűrő használata mellett. Illeszkedő, 16 bites D/A átalakító, 24 kHz-es mintalejátszási frekvencia és 8 kHzes kimeneti aluláteresztő szűrő alkalmazása mellett megállapítunk egy referencia jel-zaj viszonyt. Az egyszerűbb számítás érdekében feltételezzünk ideális szűrőket.

a) Mekkora a jel-zaj viszony, ha a vizsgálójel egy 8 kHz-es frekvenciájú szinuszjel?

- b) Elméletileg mennyit romlik a jel-zaj viszony, ha a lejátszásnál 16 helyett 8 bites (lineáris kvantálású) D/A átalakítót alkalmazunk?
- c) Mi lenne a hatása, ha (maradva a 16 bites D/A átalakítánál) a bemenő szűrő törésponti frekvenciáját kétszereznénk meg?

3. Egy lineáris szisztematikus blokk-kód az 10000, 01000, 00100, 00010, 00001 hibavektorokhoz rendre a

110, 101, 100, 010 és a 001 szindrómákat rendeli.

a) Írja fel a kód generátormátrixát és hibavédő mátrixát!

b) Irja fel a kód kódszavait!

c) Hány hiba jelzésére, és hány hiba javítására alkalmas ez a kód? Miért?

d) Mi lehetett az adott kódszó, ha a vett szó 11111? Demonstrálja a hibajavító módszert a szindróma-számítás segítségével.

4. Egy földi, a 900 MHz környéki sávban működő rádióösszeköttetés egyik végpontján fix adó (G_T = 10 dB), másik végpontján egy mozgó vevő (G_R = 3 dB, h_R = 1.66 m) helyezkedik el.
a) Mekkora lehet az adóantenna magassága, ha az interferencia zóna határa az adótól 1 km-re van?
(Az adótól legtávolabbi olyan hely, ahol a térerősség az egyutas terjedési esethez képest kétszeres mértékű.)

b) Mekkora lehet a maximális távolság az adó és a vevő között, ha azt szeretnénk, hogy az átvitel késleltetése ne haladja meg az 50 µs-t?

c) Mekkora a szakaszcsillapítás, ha a vevő éppen a b.) pontban meghatározott távolságra van az adótól?

d) Hány decibellel változik meg a vett teljesítmény, ha a mozgó vevő négyszer olyan távolra távolodik az adótól, mint azt tette a b.) pontban?

6. Adott egy B = 4 kHz sávszélességű alapsávi analóg forrás. Digitalizáljuk a forrást a minimális mintavételi frekvenciával! A digitalizáló hét diszkrét értékre kerekít: (-3; -2; -1; 0; +1; +2; +3). Ezen értékek előfordulási valószínűsége rendre: (1/32; 1/8; 1/2; 1/8; 1/26; 1/32). A digitalizálás után forráskódolást alkalmazunk és az így előálló bináris folyamatot egy adatátviteli csatornára vezetjűk. $l_i = [ldl] \rho_i$ a) Készítsen erre a forrásra Huffman- vagy Shannon-kódot!

 b) Mennyi a forrás entrópiája? Hogyan viszonyul ez a kialakított kód szimbólumonkénti átlagos kódszóhosszához?
 10
 20
 8
 10

c) Hányadrészére csökkenthető a jelzési sebesség, ha bináris-ASK helyett 8-PSK modulációt használunk?

d) Csökkenthető-e valamilyen módszerrel a szimbólumonkénti átlagos kódszóhossz, úgy, hogy a kód továbbra is prefix (-mentes) legyen? Ha igen: hogyan? Ha nem: miért nem?