Algoritmuselmélet - Vizsga, 2013.05.30.
2013.06.06. vizsga megoldásai
1. Feladat
Ebben a feladatban a Floyd algoritmussal kapcsolatos kérdésekre kell válaszolnia. (A Floyd-algoritmus egy grában minden pontpárra meghatározza a köztük levő legrövidebb út hosszát.)
(a) Mit jelöl az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_k } mátrix Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_k[i,j] } eleme?
(b) Hogyan kell kiszámolni az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_{k-1} } mátrixból az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_k } mátrixot?
(c) Igazolja, hogy ez a kiszámítási mód helyes!
(d) Mennyi a lépésszáma a (b) lépés egyszeri végrehajtásának? (A lépésszámot nem kell igazolni.)
a) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_k[i,j] } azon Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \rightarrow j } utak legrövidebbjeinek a hosszát tartalmazza, amelyek közbülső pontjai Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} -nál nem nagyobb sorszámúak. (Magyarul: Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_k[i,j] } azt mondja meg, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i} -ből Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle j} -be mennyi a legrövidebb út összsúlya, ha csak az első Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} darab csúcsot használtuk.)
b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_k[i,j]:=min\left \{ F_{k-1}[i,k]+F_{k-1}[k,j],F_{k-1}[i,j]\right \} } Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (} Vagyis vagy az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \rightarrow k \rightarrow j } lesz a legrövidebb út, vagy "marad a régi" Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \rightarrow j .)}
c) Tulajdonképpen az előzőből következik. Hiszen vagy nem változik az új csúccsal a legrövidebb út a 2 pont között Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (i \rightarrow j) } , vagy ha igen, akkor az a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (i \rightarrow k) + (k \rightarrow j) } lesz az.
d) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^2) } . Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (} Maga az algoritmus Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^3)} , de csúcsonként Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^2) } , vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n \cdot O(n^2) = O(n^3) ).}2. Feladat (Van megoldás)
Adja meg a 2-3 fa definícióját! Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!
Adja meg a 2-3 fa definícióját!
- Elemeket csak a levelekben tárolunk.
- Az elemek balról jobbra növekvő sorrendben állnak.
- Minden belső csúcsnak 2, vagy 3 fia lehet, se több, se kevesebb. (Kivéve, ha csak 1 elemet tárolunk a fában, mert akkor a gyökérnek csak 1 fia van.)
- A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak).
- A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk.
- Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol.
- A bal részfában az elemek kisebbek, mint S1.
- A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1).
- Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 kulcsot tárol.
- A bal részfában az elemek kisebbek, mint S1.
- A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2.
- A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2).
- Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol.
Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle log_2n+1\leq m \leq log_3n+1} , ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m} a fa szintszáma.
$$$ Ez nem pont fordítva van a dián? $$$
Bizonyítás:
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle log_2n+1\leq m}
- Minden belső csúcsnak legalább 2 fia van, így az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i.} szinten legalább Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{i-1}} csúcs van, tehát: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{m-1} \geq n \Rightarrow m-1 \geq log_2n \Rightarrow m \geq log_2n+1}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m\leq log_3n+1}
- Minden belső csúcsnak maximum 3 fia van, így az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i.} szinten maximum Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3^{i-1}} csúcs van, tehát: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3^{m-1} \leq n \Rightarrow m-1 \leq log_3n \Rightarrow m \leq log_3n+1}
3. Feladat
TODO
4. Feladat (Van megoldás)
Van egy tábla Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (n} x Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m} kockákból állóÉrtelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ) } . Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A } Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} x Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m} -es mátrixban adott, hogy az egyes kockákban hány mogyoró van (a mogyorók nem lógnak át egyik kockából a másikba). Két gyerek akar osztozkodni a csokin, úgy, hogy a csokit kéfelé törik (egyenes vonal mentén, párhuzamosan a tábla valamelyik szélével). Egy osztkozkodás igazságtalansági faktorát a következőképpen kaphatjuk: ha az egyik darabban Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k_1 } kocka csoki, és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m_1 } darab mogyoró van, a másikban pedig Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k_2 } kocka csoki és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m_2 } darab mogyoró, akkor az igazságtalansági faktor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left | \left ( k_1+m_1 \right ) -(k_2+m_2)\right | } . Adjon Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(nm) } lépést használó algoritmust, ami eldönti, hogy melyik szétosztásnak a legkisebb az igazságtalansági faktora. (Egy lépésnek számít, ha kiolvasunk egy értéket az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A } mátrixból vagy ha összeadást, illetve kivonást hajtunk végre két számon.)
- Hozzunk létre egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n } elemű Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle TN } tömböt, ahol az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i. } cellában az szerepel, hogy az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A } mátrix annyiadik oszlopában mennyi a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k+m } . (ez kiolvasás, és összeadás, vagyis .
- Hozzunk létre egy elemű tömböt, ahol az cellában az szerepel, hogy az mátrix annyiadik sorában mennyi a . (ez kiolvasás, és összeadás, vagyis .
- Hozzunk létre egy x -es tömböt, ahol az 1. sorban balról jobbra nézzük, mennyi a , a 2. sorban pedig jobbról balra. 1. sor a , 2. sor pedig a hozzá tartozó
- majd .
- majd .
- Hozzunk létre egy x -es tömböt, ahol az 1. sorban fentről lefele nézzük, mennyi a , a 2. sorban pedig alulról felfele. 1. sor a , 2. sor pedig a hozzá tartozó
- majd .
- majd .
- Az és tömbök létrehozása és lépést igényel.
- Nincs is más dolgunk, mint végigmenni az és tömbökön úgy, hogy az oszlopban vesszük a 2 szám különbségének abszolút értékét, vagyis az igazságtalansági faktort számoljuk, és mindig elmentjük egy változóba a minimumot, és a ehhez tartozó törésvonalat. Ez is és lépés.
- Összesen tehát lépéssel megoldottuk a feladatot.
5. Feladat (Van megoldás)
Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .
Van olyan és , hogy esetén
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
, ahol , vagyis
ha (A lényeg, hogy felülről becsüljük!)
Tehát6. Feladat (Van megoldás)
Egy ország n kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak).
- Első lépésben az élsúly legyen a
- Vegyük fel az összes profitot termelő, vagy legalábbis veszteséget nem termelő éleket lépés. Ez legyen mondjuk a G gráf.
- Két eshetőség áll fenn:
- Ha a G gráf összefüggő, akkor jók is vagyunk, nincs további teendőnk, meg is vagyunk.
- Ha nem összefüggő, akkor:
- Az egyes komponenseket tekintsük egy pontnak. Minden olyan él, ami ebbe a komponensbe megy, menjen ebbe a pontba. Így kapunk egy F gráfot.
- Erre az F gráfra hívunk meg egy Prim-algoritmust, ami időben keres az F gráfban egy minimális feszítőfát (vagyis a komponenseket - ami most jelenleg 1-1 pont a gráfban - a lehető legkisebb költségű élekkel köti össze).
- Tehát Prim-algoritmussal, vagy anélkül időben megmondjuk, hogy mely hajójáratok indításával lesz az évi bevétel a legmagasabb.
7. Feladat
TODO
8. Feladat
TODO