
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Graphical Concrete Syntax Design
for Domain-specific Languages

Model Driven Software Development

Lecture 6

Structure of DSMs
Graphical syntax

Code generation

View

Well-formedness
constraints

Behavioural semantics,
simulation

Abstract syntax

Textual syntax

Mapping

Code
(documentation,

configuration)

2

DSM aspects

DSM

Abstract
syntax

Concrete
syntax

Well-
formedness
constraints

Behavioural
(dynamic)
semantics

Views,
translations,

mappings

3

Concrete Syntax Design

 User-managed parts of a modeling language

o Performance

o Robustness

o Usability issues

 Creating model editors

o Similar problems at programming languages

o IDE extensions needed

4

Approaches

 Textual syntax

o Character-based edit operations (unless projectional)

o Abstract syntax: traditional AST

 Graphical syntax

o Editing operations: translated to abstract syntax

o Abstract syntax: based on metamodel

 Form-based entry

o Less common

o Behaves similar to graphical syntax

5

Advanced features

High level editing support

• Outline view

• Documentation display (e.g.
Javadoc)

• Templates/snippets/examples

• Content assist

• Validation, automatic fixes

Project-level integration

• Code generation

• Wizards to create
projects/files

• Integration with manually
written code in programming
language

6

Technology

 Eclipse Modeling Tools

o Several related subprojects

o Each supports a single aspect

o Examples of today

 Microsoft Visual Studio 2010 Visualization &
Modeling SDK

o DSL modeling framework from Microsoft

o Own metamodeling core

o Focuses on graphical modeling

7

Graphical Editors

Graphical Editor Techiques

GEF
• Draw2D

EMF
• EMF.Edit

GMF Graphiti

Sirius EuGENia

GEF3D Zest

Spray

Graphical Modeling

 Model

o Typically graph-based modeling (Edges, Nodes)

o In our case EMF

 Idea

o Display and editing as a graph model

10

Example: Petri net editor

11

Tree-based
outline view

Example: Social Network editor

12

Graphical
outline view

Properties
view

Project
Explorer

extensions

Implementation

 Presentation

o Based on a Canvas

o Using vector-graphic libraries (GEF/Draw2d)

 Model manipulation

o EMF Edit model manipulation commands

• Atomic operations: create/modify/remove node/edge

o Transactional modifications

• Undo/redo support

• Replayability

13

Implementation 2.

 View models

o Modeling for view-specific information

• Coordinates

• Size

• Colors and fonts

• …

o Generic implementation in GMF and Graphiti

o Often stored in external files

• Separation of concerns

• E.g. code generator not interested in view information

14

Technologies 1. - GEF

 Graphical Editing Framework (GEF)

o “Low level” editor framework

o Not EMF-specific

 Model-View-Controller approach

 Generic graph-based editor framework

o Including undo/redo support

o Graphical outlines

 Manual coding for every possible element

 GEF4 FX – JavaFX-based
replacement of the core

15

Technologies 2. – GMF

 Graphical Modeling Framework

 Based on GEF and EMF

 Well-separated view and domain models

o Generic view model

o Synchronization provided by GMF framework

 Relatively old technology

o Widely used

o Very complex to start

16

Technologies 2. – GMF

 Model-driven development environment
o Common model for graphical editors, using

• Figure definition model
– Basic symbol definition of the graphical language

• Tooling model
– Defining model manipulation commands

• Mapping model
– Mapping figures and tools to domain model

o Fully functional editor can be generated
• Problematic manual modifications

 Or a high-level editor framework
o Manual coding

17

Technologies 3. - Graphiti

 Newer high level graphical editor framework

o Based on EMF and GEF

o But: different approach then GMF

• Simplified programmatic API

• Manual coding

o Idea

• All Graphiti based editors should
– Look similar

– Behave similar

18

Technologies 3. - Graphiti

 Development methodology

o Coding over a high-level Java framework

• Much simpler then GMF

• Repetitive code needed

 Spray project

o Textual modeling environment for graphical editors

o Generates code over the Graphiti framework

19

Technologies 4. - Sirius

20

 New modeling project

o Since 2013 on eclipse.org

o Previously Obeo Designer – commercial tool

 How stable is it?

o Old projects are to be migrated

o Version history

• 0.9: 2013-12-10

• 1.0: 2014-06-25 (Kepler release train)

• …

• 4.0: 2016-06-22

• …

Sirius Viewpoints

 Base concept:

o Every diagram is a view of the model

o With a defined syntax

• Graphical

• Table/Tree syntax

• Xtext-based textual syntax

 Viewpoint definition

o Viewpoint specification model

Viewpoint Specification Model

Viewpoint

Feature Provider
registration

Mappings

Creation tools

Node & Edge Mapping

Domain class

Filter settings

Edge class

Source features

Target features

Feature Selection

 Interpreted expressions
o Special interpreters

• var: accessing specification model variables

• feature: accessing EMF model features

• service: accessing service methods

o Acceleo
• Acceleo expressions

– Basic operations

– Comparison with single ‘=‘ symbols

• Syntax: [theExpression/]

o Raw OCL
• Not recommended, Acceleo provides superset features

o Custom interpreter

Node & Edge Tool

Tool parameter
variables

Model creation
sequence

Different
variables

More complex
creation steps

Interpreted Modeler Development
Viewpoint

specification

View model using
the interpreted

specification

Technology Comparison
GEF GMF Graphiti Sirius

Model Arbitrary EMF EMF EMF

Non
graph-based
presentation

Manageable Large amount of
customization
needed

Not supported Tree, Table

Code size Large,
repetitive code

Mostly
modeling,
some coding

Smaller amount,
but repetitive
code

Negligible

Development
workflow

Only coding Modeling and
coding

Coding Modeling

27

Advanced issues

 Cumbersome editing

o E.g., reorganization to insert a node to the middle

 Handling large models

o 20+ nodes on a diagram:

• Logical structure, readability possible

• But needs human support

o 100-1000+ nodes on a diagram

• Technological limitations

• Usability limitations

28

Example: Layouting

29

Example: Layouting

30

Layouting Support for Graphical Editors

 Computation of the position of nodes

o Possible to do automatically

o For a given metamodel

• No unified visual requirements possible

• We have to decide what is important to show

31

Minimum
amount of

edge crossings

Minimum edge
length

Layouting Support for Graphical Editors

 GraphViz - http://graphviz.org

o Layouting project with high quality layout algorithm

o Hard to integrate into Eclipse applications

 Zest - http://wiki.eclipse.org/index.php/Zest

o Easily Eclipse integration (SWT-based graph widget)

o So-so layout algorithms

 ELK (née KIELER) - https://www.eclipse.org/elk/ (relatively new)

o Eclipse Layout Kernel

o Some built-in support: GMF, Graphiti

o Highly extensible

32

http://graphviz.org
http://wiki.eclipse.org/index.php/Zest
https://www.eclipse.org/elk/
https://www.eclipse.org/elk/

Textual or graphical?

Comparison

Textual Languages Graphical Languages

Quick and simple editing More cumbersome editing

References described as
string identifiers

References displayed visually

Inconsistent models during
editing

Models always syntactically
correct

Automatic formatting Automatic layouting

Content assist Tool list to add nodes/edges

Displaying validation errors, offering quick fixes

Both are supported with EMF-based technologies
34

35

Editing

State

Modified state

Ed
it

Graphical editors
• Insert model element
• Remove model element
• Insert reference
• Remove reference
• Modify attribute

(non-projectional)
Textual Editors:

• Insert character(s)
• Delete character(s)
• Replace character(s)

Question: textual or graphical?

 No clear choice

 Rules of thumb

o Behaviour description is usually simpler in textual

o For structural information graphical is often better

 For simple languages

o Form-based editing might also be an alternative

36

Xtext and GMF on the same instance model

37

Derived Graphical viewer support

 Xtext Generic Viewer component

o Created by Xtext developers

o Independent from the main Xtext development

o Requies an extra language

• to define uni-directional mapping

• to define format

 See “A fresh look at graphical modeling” for
details

o http://www.slideshare.net/schwurbel/a-fresh-look-at-
graphical-editing-10068461

38

http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461
http://www.slideshare.net/schwurbel/a-fresh-look-at-graphical-editing-10068461

Concrete Syntax Design

Conclusion

Concrete Syntax Design

 Multiple approaches

o Textual and/or graphical syntaxes

o Combinable

 Large amount of development work needed

o Directly used by users

o Usability issues

 Not everything is coded in an editor

o Editor + corresponding views form the interface

40

