
Budapest University of Technology and Economics
Department of Measurement and Information Systems

VIATRA QUERY
Incremental evaluation of model queries

Model Driven Systems Development
Lecture 05

MOTIVATION

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

AUTOSAR:
• standardized SW architecture
 of the automotive industry
• now supported by modern modeling tools
Design Rule/Well-formedness constraint:
• each valid car architecture needs to respect
• designers are immediately notified if violated
Challenge:
• >500 design rules in AUTOSAR tools
• >1 million elements in AUTOSAR models
• models constantly edited by designers

Domain-Specific Modeling Languages

Abstract

Meta-
model

Model

«type»

Validation of Well-formedness Constraints

Meta-
model

Model

pattern switchWOSignal(sw) {

 Switch(sw);

 neg find switchHasSignal(sw);

}

pattern switchHasSignal(sw) {

 Switch(sw);

 Signal(sig);

 Signal.mountedTo(sig, sw);

}

Query

Modify

User

Result

Model sizes in practice

 Models with 10M+ elements are common:

o Car industry

o Avionics

o Source code analysis

 Models evolve and change continuously

Source: Markus Scheidgen, How Big are Models – An Estimation, 2012.

Application Model size

System models 108

Sensor data 109

Geospatial models 1012

Validation can take hours

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

 For a programmer:

o A piece of code that searches for parts of the model

 For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

 A query engine: Supports

o the definition&execution
of model queries

Query(A,B) ∧condi(Ai,Bi)

• all tuples of model elements a,b
• satisfying the query condition
• along the match A=a and B=b
• parameters A,B can be input/ output

Categorization of Query Languages

 Hard to write?

 Your options

o Java (or C/C++, C#, …)

o Declarative languages (OCL, EMF Query 1-2, …)

 Imperative query languages Declarative query languages

Expressive power (you write lots of code) (very concise)

Safety (precise control over what
happens at execution)

(unintended side-effects)

Learning curve (you already know it) (may be difficult to learn)

Reusability (standard OO practices) (???)

Performance (considerable manual
optimization necessary)

 (depends on various
factors)

Graph Pattern Matching for Queries

 Match:

o m: L G
(graph morphism)

o CSP:

• Variables: Nodes of L

• Constraints: Edges of L

• Domain values: G

o Complexity: |G|^|L|

L

G
straight

left

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

All sensors with a switch that belongs to a route must directly be linked to the same route.

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Search Plan:

o Select the first node
to be matched

o Define an ordering on
graph pattern edges

 Search is restarted from
scratch each time

1
2

0

3

4

straight

left

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Search Tree:

1
2

0

3

4

straight

left
X

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Alternate Search Tree:

4
3

0

2

1

straight

left
X

X

Local Search
based PM
• Runtime depends
 on search plan
• Good search plan:
 narrow at root
 wide at leaves

INCREMENTALITY IN
QUERIES AND TRANSFORMATIONS

Performance of query evaluation

 Query performance = Execution time
as a function of

o Query complexity

oModel size

o Result set size

 Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
query results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Incremental Graph Pattern Matching

 Main idea: More space to less time
o Cache matches of patterns

o Instantly retrieve match (if valid)

o Update caches upon model changes

o Notify about relevant changes

 Approaches:
o TREAT, LEAPS, RETE, …

o Tools: VIATRA, GROOVE, MoTE, TCore

straight

left

route sp switch sensor

r1 sp1 sw1

Batch vs. Live Query Scenarios

 Batch query
(pull / request-driven):

1. Designer selects a query

2. One/All matches are
calculated

3. Action is applied on
one/all matches

4. All Steps 1-3 are redone if
model changes

 Query results obtained
upon designer demand

 Live query
(push / event-driven):

1. Model is loaded

2. Queries loaded

3. Calculate full match set

4. Model is changed

5. Iterate Steps 3 and 4 until
system is stopped

 Query results are always
available for designer

• Declarative graph query
language

• Transitive closure,
Negative cond., etc.

• Compositional, reusable

Definition

• Incremental evaluation

• Cache result set

• Maintain incrementally
upon model change

Execution

• Derived features,

• On-the-fly validation

• View generation,

• Works out-of-the-box
with EMF applications

Features

VIATRA Query: An Open Source Eclipse Project

http://eclipse.org/viatra
Formerly known as
EMF-INCQUERY

GRAPH MODEL QUERIES: THE
LANGUAGE

The VIATRA QUERY Language (VQL)

 VQL: declarative query language
o Attribute constraints

o Local + global queries

o Compositionality+Reusabilility

o Recursion, Negation,

o Transitive Closure over
Regular Path Queries

o Syntax: DATALOG style

pattern routeSensor(sensor: Sensor) = {
 TrackElement.sensor(switch,sensor);
 Switch(switch);
 SwitchPosition. switch(sp, switch);
 SwitchPosition(sp);
 Route.switchPosition(route, sp);
 Route(route);
 neg find head(route, sensor);
}
pattern head(R, Sen) = {
 Route.routeDefinition(R, Sen);
}

route: Route sp: SwitchPosition

Switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Example

 Other detailed examples
incquery.net/incquery/new/examples/

Statecharts metamodel

VQL Simple queries
// S is a state of a statemachine with name N
pattern state(S:State, N) {
 State.name(S,N);
}
// Old VIATRA style
pattern state(S,N) {
 State(S);
 State.name(S,N);
}
// Smart type inference
pattern state(S,N) {
 State.name(S,N);
}
// Checks if a state is red
pattern redState(S: State) {
 State.visualisation.red(S, true);
 State.visualisation.green(S, false);
 State.visualisation.yellow(S, false);
}

// S is a state of a statemachine with name N
pattern state(S:State, N) {
 State.name(S,N);
}
// Old VIATRA style
pattern state(S,N) {
 State(S);
 State.name(S,N);
}
// Smart type inference
pattern state(S,N) {
 State.name(S,N);
}
// Checks if a state is red
pattern redState(S: State) {
 State.visualisation.red(S, true);
 State.visualisation.green(S, false);
 State.visualisation.yellow(S, false);
}

VQL Simple queries Query definition

Query parameter

Type constraint

Attribute navigation

Syntactic sugar

Path expression

// S is a state of a statemachine with name N
pattern state(S:State, N) {
 State.name(S,N);
}
// Old VIATRA style
pattern state(S,N) {
 State(S);
 State.name(S,N);
}
// Smart type inference
pattern state(S,N) {
 State.name(S,N);
}
// Checks if a state is red
pattern redState(S: State) {
 State.visualisation.red(S, true);
 State.visualisation.green(S, false);
 State.visualisation.yellow(S, false);
}

VQL Simple queries

// T is a timed transition between a
// from state and a to state with delay D
pattern timedTransition(T,from,to,D) {
 Transition.fromState(T,from);
 Transition.toState(T,to);
 TimedTransition(T);
 TimedTransition.delay(T,D);
}
// T is an interrupt transition between a
// from state and a to state with event E
pattern interruptTransition(T,from,to,E) {
 Transition.fromState(T,from);
 Transition.toState(T,to);
 InterruptTransition(T);
 InterruptTransition.name(T,E);
}

Support for built-in
EMF datatypes:
Strings, integers, etc.

VQL Pattern composition and NAC

// The result of Event is non-deterministic in State
pattern nondeterministicState(State, Event) {
 find interruptTransition(_,State,To1,Event);
 find interruptTransition(_,State,To2,Event);
 To1 != To2;
}
// No timed transition going out of a State
pattern noTimedTransition(State) {
 State(State);
 neg find timedTransition(_,State,_,_);
}

Pattern composition / call

Negative application
condition

Anonymous variables
(see Prolog)

VQL Transitive closure and disjunction

pattern transition(from,to) {
 Transition.fromState(T,from);
 Transition.toState(T,to);
}

pattern reachable(from:State,to:State) {
 from == to;
} or {
 find transition+(from,to);
}

pattern unreachableState(S:State) {
 TrafficDSL.states(dsl,S);
 TrafficDSL.start(dsl,Start);
 neg find reachable(Start,S);
}

Disjunction
(on pattern level)

Transitive closure
(over 2 param patterns)

Note that:
• negative calls do not bind
variables of header parameters
• patterns should be connected by
edges (avoid Cartesian product)

VQL Check expression & Match count

pattern teachersWithMostCourses(
 School : School, Teacher : Teacher) = {
 School.teachers(School,Teacher);
 neg find moreCourses(Teacher);
}
pattern moreCourses(Teacher : Teacher) = {
 N == count find coursesOfTeacher(Teacher,_Course);
 M == count find coursesOfTeacher(Teacher2,_Course2);
 Teacher(Teacher2);
 Teacher != Teacher2;
 check(N < M);
}

Check expression
for attribute values
(pure!)

Match counting

Overview of VIATRA QUERY Language
 Features of the pattern language

o Works with any (pure) EMF based DSL and application

o Reusability by pattern composition

o Arbitrary recursion, negation

o Generic and parameterized model queries

o Bidirectional navigability of edges / references

o Immediate access to all instances of a type

o Complex change detection

 Benefits

o Fully declarative + Scalable performance

VIATRA QUERY Development Tools

Query Explorer

Pattern Editor

Queries are applied &
updates on-the-fly

• Works with most EMF-
based editors out-of-
the-box

• Reveals matches as
selection

VIATRA QUERY
VALIDATION FRAMEWORK

VIATRA QUERY Validation Framework

 Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses VIATRA QUERY graph patterns to specify constraints

 Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

• Execution model is different

Well-formedness rule specification by graph patterns

 WFRs: Invariants which must hold at all times

 Specification = set of elementary constraints +
context

o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

 Constraints by graph patterns

o Define a pattern for the “bad case”

• Either directly

• Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Match:
A violation of
the invariant

@Constraint(key = {A, Event}, message = „State $A.name$ handles event
$Event.name$ ambiguously", severity = "warning")
pattern nondeterministicState(A, Event) {
 find interruptTransition(_,A,To1,Event);
 find interruptTransition(_,A,To2,Event);
 To1 != To2;
}
@Constraint(key = {State}, message = "There should be at most one timed
transition going from a state", severity = "error")
pattern noTimedTransition(State) {
 State(State);
 neg find timedTransition(_,State,_,_);
}

EXAMPLE

 “All interrupt names on transitions going out of a single state must
be distinct.”

 Capture the bad case as a query
o There are two outgoing interrupt transitions triggered by the same event

 Add a @constraint annotation to derive an error/warning message

Statechart validation constraint

Validation lifecycle

 Constraint violations

o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present

 Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

Validation UI integration

 A menu item (command) to start the validation
engine

 Generic (part of the VIATRA QUERY Validation
framework)

o GMF editor command

• Appears in all GMF-based editor’s context menu

o Sample Reflective Editor command

• Appears on the toolbar

 Generated

o EMF generated tree editor command

• Appears on the toolbar

CALCULATING DERIVED FEATURES
BY INCREMENTAL QUERIES

Metamodels with Derived Features
Derived

Reference

/interruptTransitions(A,B):
• B is an InterruptTransition
• B is a transition in A

Derived Features:
• Values calculated from other elements
• Defined declaratively as model queries
 (e.g. OCL, graph queries)
• Tooling: handle as regular EMF elements

Example

Handling Derived Features as Queries

@QueryBasedFeature
pattern
interruptTransitions(DSL:TrafficDSL,T)
{
 TrafficDSL.transitions(DSL,T);
 InterruptTransition(T);
}

private IncqueryDerivedFeature interruptTransitionsHandler;
public EList<InterruptTransition> getInterruptTransitions() {
 if (interruptTransitionsHandler == null) {
 interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(
 this, SystemPackageImpl.Literals.DATA__READING_TASK,
 "system.queries.InterruptTransitions", "TrafficDSL", "InterruptTransition",
 FeatureKind.MANY_REFERENCE, true, false);}
 return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

Derived
Reference

DF specification:
as a query

Auto-generated
DF handler (Java)

VIATRA VIEWERS

Live abstractions

Complex model

abstract

Computed overlay
aka. “View”

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

Items = SELECT …

Defined by a query

Live abstractions

Complex model

abstract

Computed overlay
aka. “View”

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

2 N3 e F

Items = SELECT …

Defined by a query

Model
Modification

Change notification

Query result update

UI update

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

VIATRA Viewers

EMF Model
Live

Queries

2. Change
Notifications

1. Model
Modification

Live
Queries

Derived
Model

UI

3. Continuous,
efficient
synchronization

4. UI updates

Labeled, hierarchic
property graph

On-the-fly
abstractions over

the model

 Visualize things that are not (directly) present in your model

 Provides an easy-to-use API for integration into your presentation layer

o Eclipse Data Binding

o Simple callbacks

Example Query based view annotations

@Format(color = "#ff0000")
@Item(item = S, label = "N")
pattern redState(S: State,N) { … }

@Item(item = S, label = "N")
pattern state(S,N) = { … }

@Format(lineColor = "#0000ff")
@Edge(source = from, target = to, label = "D ms")
pattern timedTransition(T,from,to,D) = { … }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "E event")
pattern interruptTransition(T,from,to,E) = { … }
}

What can I do with all this? – query-based live abstractions

Syntax
Eclipse

technology
Pros

Trees, tables,
Properties

(JFace viewers)
EMF.Edit

The real deal:
doesn’t hide abstract syntax

Diagrams
GEF, GMF,
Graphiti

Easy to read and write
for non-programmers

Textual DSLs Xtext
Easy to read and write

for programmers

JFace, Zest,
yFiles

Your tool!
VIATRA Viewers

Makes understanding and
working with complex models

a lot easier

PERFORMANCE BENCHMARKS

The Train Benchmark
 Model validation workload:

o User edits the model
o Instant validation of

well-formedness constraints
o Model is repaired accordingly

 Scenario:
o Load
o Check
o Edit
o Re-Check

 Models:
o Randomly generated
o Close to real world instances
o Following different metrics
o Customized distributions
o Low number of violations

 Queries:
o Two simple queries

(<2 objects, attributes)
o Two complex queries

(4-7 joins, negation, etc.)
o Validated match sets

Incremental validation Batch validation

Instance
model

Read Check Edit ReCheck !

100x

What Tools are Compared?

Batch validation runtime (complex queries)

2.8 million nodes +
11.2 million edges

0.7 million nodes +
2.8 million edges

EMF-IncQuery:
Batch execution is dominated by
• loading the model
• initializing the indexers

88k nodes +
347k edges

Re-validation time (complex queries)

Characteristic
difference

(note the log scale)

EMF-IncQuery:
• close to zero response time
• up to models with
 14 million elements

http://incquery.net/publications/trainbenchmark for more details

2.8 million nodes +
11.2 million edges

Memory usage

• Incremental engines impose
a linear memory
consumption overhead

• INCQUERY’S overhead is only
slightly larger than OCL-IA

• BUT: Most standard JVMs start
having severe performance
issues with large models

CONCLUSIONS

Selected Applications of VIATRA QUERY
• Complex traceability

• Query driven views

• Abstract models by
derived objects

Toolchain for
IMA configs

• Connect to Matlab
Simulink model

• Export: Matlab2EMF

• Change model in EMF

• Re-import:
EMF2Matlab

MATLAB-EMF
Bridge

• Live models
(refreshed 25
frame/s)

• Complex event
processing

Gesture
recognition

• Experiments on open
source Java projects

• Local search vs.
Incremental vs.
Native Java code

Detection of bad
code smells

• Rules for operations

• Complex structural
constraints (as GP)

• Hints and guidance

• Potentially infinite
state space

Design Space
Exploration

• Itemis (developer)

• Embraer

• Thales

• ThyssenKrupp

• CERN

Known Users

